Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 121(10): 1168-1181, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-28851809

RESUMEN

RATIONALE: CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9)-based DNA editing has rapidly evolved as an attractive tool to modify the genome. Although CRISPR/Cas9 has been extensively used to manipulate the germline in zygotes, its application in postnatal gene editing remains incompletely characterized. OBJECTIVE: To evaluate the feasibility of CRISPR/Cas9-based cardiac genome editing in vivo in postnatal mice. METHODS AND RESULTS: We generated cardiomyocyte-specific Cas9 mice and demonstrated that Cas9 expression does not affect cardiac function or gene expression. As a proof-of-concept, we delivered short guide RNAs targeting 3 genes critical for cardiac physiology, Myh6, Sav1, and Tbx20, using a cardiotropic adeno-associated viral vector 9. Despite a similar degree of DNA disruption and subsequent mRNA downregulation, only disruption of Myh6 was sufficient to induce a cardiac phenotype, irrespective of short guide RNA exposure or the level of Cas9 expression. DNA sequencing analysis revealed target-dependent mutations that were highly reproducible across mice resulting in differential rates of in- and out-of-frame mutations. Finally, we applied a dual short guide RNA approach to effectively delete an important coding region of Sav1, which increased the editing efficiency. CONCLUSIONS: Our results indicate that the effect of postnatal CRISPR/Cas9-based cardiac gene editing using adeno-associated virus serotype 9 to deliver a single short guide RNA is target dependent. We demonstrate a mosaic pattern of gene disruption, which hinders the application of the technology to study gene function. Further studies are required to expand the versatility of CRISPR/Cas9 as a robust tool to study novel cardiac gene functions in vivo.


Asunto(s)
Sistemas CRISPR-Cas/genética , Dependovirus/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Miocitos Cardíacos/fisiología , ARN Guía de Kinetoplastida/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células 3T3 NIH , ARN Guía de Kinetoplastida/administración & dosificación
2.
Mol Ther ; 25(3): 694-704, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202391

RESUMEN

MicroRNAs (miRNAs) are important regulators of biology and disease. Recent animal efficacy studies validate the therapeutic benefit of miRNA modulation and underscore the therapeutic value of miRNA-targeting oligonucleotides. However, whether disease conditions (stress) influence the pharmacological effects of an anti-miR is currently unknown. To study the effect of disease on target regulation after anti-miR treatment, we injected animals with anti-miR-208a, a synthetic oligonucleotide that inhibits the cardiomyocyte-specific miR-208a. Our data indicate that the presence of stress increases the number of regulated miR-208a targets, and that higher stress levels correlate with stronger target derepression. Additionally, the type of stress also influences which targets are regulated upon miR-208a inhibition. Studies in a large animal model indicate a similar stress-dependent anti-miR effect. Subsequent in vitro studies suggest that the influence of stress on anti-miR efficacy depends at least in part on increased cellular anti-miR uptake. These data indicate that the pharmacological effect of anti-miRs is stronger under disease conditions, and that both the type and severity of disease determine the therapeutic outcome. These facts will be important for assessing the therapeutic dose and predicting the therapeutic outcome when applying anti-miRs in a clinical setting.


Asunto(s)
Antagomirs/genética , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Estrés Fisiológico/genética , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Interferencia de ARN , Ratas , Porcinos
4.
Cardiovasc Res ; 117(6): 1532-1545, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32717063

RESUMEN

AIMS: Pathological cardiac remodelling is characterized by cardiomyocyte (CM) hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here, we aimed for a more detailed view on molecular changes driving maladaptive CM hypertrophy to aid in the development of therapies to reverse pathological remodelling. METHODS AND RESULTS: Utilizing CM-specific reporter mice exposed to pressure overload by transverse aortic banding and CM isolation by flow cytometry, we obtained gene expression profiles of hypertrophic CMs in the more immediate phase after stress, and CMs showing pathological hypertrophy. We identified subsets of genes differentially regulated and specific for either stage. Among the genes specifically up-regulated in the CMs during the maladaptive phase we found known stress markers, such as Nppb and Myh7, but additionally identified a set of genes with unknown roles in pathological hypertrophy, including the platelet isoform of phosphofructokinase (PFKP). Norepinephrine-angiotensin II treatment of cultured human CMs induced the secretion of N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) and recapitulated the up-regulation of these genes, indicating conservation of the up-regulation in failing CMs. Moreover, several genes induced during pathological hypertrophy were also found to be increased in human HF, with their expression positively correlating to the known stress markers NPPB and MYH7. Mechanistically, suppression of Pfkp in primary CMs attenuated stress-induced gene expression and hypertrophy, indicating that Pfkp is an important novel player in pathological remodelling of CMs. CONCLUSION: Using CM-specific transcriptomic analysis, we identified novel genes induced during pathological hypertrophy that are relevant for human HF, and we show that PFKP is a conserved failure-induced gene that can modulate the CM stress response.


Asunto(s)
Cardiomegalia/genética , Perfilación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Transcriptoma , Remodelación Ventricular/genética , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Fosfofructoquinasa-1 Tipo C/genética , Fosfofructoquinasa-1 Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA