Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 3(5): 1507-1529, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-27713315

RESUMEN

Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS), which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS), that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body's immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

2.
J Comb Chem ; 7(5): 697-702, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16153064

RESUMEN

As part of our program to identify novel small molecules with interesting biological activity, we have designed and synthesized a library of end-capped dipeptides with an emphasis on compound diversity, complexity, and membrane permeability. An approximately 1500-member library was synthesized manually on large polystyrene beads using the mix-and-split method. The final compounds were cleaved into 384-well plates to generate individual stock solutions for input into high-throughput biological screens. Individual compounds were decoded using a combination of mass spectrometry and microflow NMR spectroscopy. In principle, this approach to deconvolution obviates the need for complicated binary encoding-decoding strategies for one-bead-one-compound libraries.


Asunto(s)
Dipéptidos/química , Microquímica/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Biblioteca de Péptidos , Aminoimidazol Carboxamida/química , Microfluídica , Poliestirenos/química , Sulfonamidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA