Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 62(13): 3439-3444, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132845

RESUMEN

Deep learning plays an important role in the field of machine learning, which has been developed and used in a wide range of areas. Many deep-learning-based methods have been proposed to improve image resolution, most of which are based on image-to-image translation algorithms. The performance of neural networks used to achieve image translation always depends on the feature difference between input and output images. Therefore, these deep-learning-based methods sometimes do not have good performance when the feature differences between low-resolution and high-resolution images are too large. In this paper, we introduce a dual-step neural network algorithm to improve image resolution step by step. Compared with conventional deep-learning methods that use input and output images with huge differences for training, this algorithm learning from input and output images with fewer differences can improve the performance of neural networks. This method was used to reconstruct high-resolution images of fluorescence nanoparticles in cells.

2.
Opt Lett ; 47(14): 3427-3430, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838696

RESUMEN

Time-gated luminescence spectra are usually measured by laboratory instruments equipped with high-speed excitation sources and spectrometers, which are always bulky and expensive. To reduce the reliance on expensive laboratory instruments, we demonstrate the first, to the best of our knowledge, use of a smartphone for the detection of time-gated luminescence spectra. A mechanical chopper is used as the detection shutter and an optical switch is placed at the edge of the wheel to convert the chopping signal into a transistor-transistor logic (TTL) signal which is used to control the excitation source and achieve synchronization. The time-gated luminescence spectra at different delay times of Eu(TTA)3 powder and the solutions of Eu-tetracycline complex are successfully detected with a temporal resolution of tens of microseconds by the proposed approach. We believe our approach offers a route toward portable instruments for the measurement of luminescence spectra and lifetimes.


Asunto(s)
Luminiscencia , Teléfono Inteligente , Análisis Espectral
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117434, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31394392

RESUMEN

Molecular motion plays an important role in the reverse intersystem crossing of thermally activated delayed fluorescence (TADF) materials, since the conformation varies as the molecule vibrates, leading to potential changes in the energies of excited states. Although many theoretical simulations have researched the relationship between the excited states and the molecular conformations, there are still few experimental results showing the energy level difference between different long-lived excited states. Herein, a novel method for measuring spectrally resolved luminescence lifetimes is proposed to detect the energy splitting of the long-lived excited states of a classical TADF molecule, BTZ-DMAC. A set of the time-gated luminescence spectra with different delay times were captured by a spectrograph equipped on an auto-phase-locked system, and then used for lifetime analysis at each wavelength. Unlike traditional measurement techniques, the proposed novel method does not require ultrafast laser, high-speed detector and any phase matching circuitry, thus significantly reducing the cost. This method revealed a definite energy gap between the two excited states of BTZ-DMAC with different lifetimes, indicating different conformations caused by molecular vibration. This low-cost method could be also used to detect many other luminescence materials for investigating the detail mechanisms of multiple excited states.

4.
Front Chem ; 8: 562, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695750

RESUMEN

Time-resolved luminescence measurement is a useful technique which can eliminate the background signals from scattering and short-lived autofluorescence. However, the relative instruments always require pulsed excitation sources and high-speed detectors. Moreover, the excitation and detecting shutter should be precisely synchronized by electronic phase matching circuitry, leading to expensiveness and high-complexity. To make time-resolved luminescence instruments simple and cheap, the automatic synchronization method was developed by using a mechanical chopper acted as both of the pulse generator and detection shutter. Therefore, the excitation and detection can be synchronized and locked automatically as the optical paths fixed. In this paper, we first introduced the time-resolved luminescence measurements and review the progress and current state of this field. Then, we discussed low-cost time-resolved techniques, especially chopper-based time-resolved luminescence detections. After that, we focused on auto-phase-locked method and some of its meaningful applications, such as time-gated luminescence imaging, spectrometer, and luminescence lifetime detection. Finally, we concluded with a brief outlook for auto-phase-locked time-resolved luminescence detection systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA