Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Genomics ; 15(1): 18, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726831

RESUMEN

BACKGROUND: In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people's health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein-protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. RESULTS: In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. CONCLUSIONS: In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.


Asunto(s)
Bronquios/virología , COVID-19/genética , Regulación de la Expresión Génica , Bronquios/fisiología , Quimiocina CXCL10/genética , Factor de Crecimiento Epidérmico/genética , Interacciones Huésped-Patógeno/genética , Humanos , Interleucina-8/genética , Organoides , Mapas de Interacción de Proteínas/genética , Programas Informáticos
2.
Acta Pharmacol Sin ; 43(10): 2687-2695, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35296779

RESUMEN

The small molecule chemical compound cinobufotalin (CB) is reported to be a potential antitumour drug that increases cisplatin (DDP) sensitivity in nasopharyngeal carcinoma. In this study, we first found that CB decreased DDP resistance, migration and invasion in lung adenocarcinoma (LUAD). Mechanistic studies showed that CB induced ENKUR expression by suppressing PI3K/AKT signalling to downregulate c-Jun, a negative transcription factor of ENKUR. Furthermore, ENKUR was shown to function as a tumour suppressor by binding to ß-catenin to decrease c-Jun expression, thus suppressing MYH9 transcription. Interestingly, MYH9 is a binding protein of ENKUR. The Enkurin domain of ENKUR binds to MYH9, and the Myosin_tail of MYH9 binds to ENKUR. Downregulation of MYH9 reduced the recruitment of the deubiquitinase USP7, leading to increased c-Myc ubiquitination and degradation, decreased c-Myc nuclear translocation, and inactivation of epithelial-mesenchymal transition (EMT) signalling, thus attenuating DDP resistance. Our data demonstrated that CB is a promising antitumour drug and may be a candidate chemotherapeutic drug for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Antineoplásicos , Cisplatino , Neoplasias Nasofaríngeas , Proteínas Adaptadoras Transductoras de Señales , Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bufanólidos , Proteínas de Unión a Calmodulina , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Cadenas Pesadas de Miosina , Miosinas/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Peptidasa Específica de Ubiquitina 7 , beta Catenina/metabolismo
3.
Curr Cancer Drug Targets ; 23(9): 669-681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36809966

RESUMEN

The corresponding mRNA vaccines Comirnaty (BNT162b2) and Spikevax (mRNA-1273) have been authorized for emergency use since the COVID-19 outbreak. Most clinical researches have also discovered that the mRNA vaccine is a revolutionary strategy for preventing and treating numerous diseases, including cancers. Unlike viral vectors or DNA vaccines, mRNA vaccines cause the body to directly produce proteins following injection. Delivery vectors and mRNAs that encode tumor antigens or immunomodulatory molecules work together to trigger an anti-tumor response. Before mRNA vaccines may be employed in clinical trials, a number of challenges need to be resolved. These include establishing effective and safe delivery systems, generating successful mRNA vaccines against diverse types of cancers, and proposing improved combination therapy. Therefore, we need to improve vaccine-specific recognition and develop mRNA delivery mechanisms. This review summarizes the complete mRNA vaccines' elemental composition and discusses recent research progress and future direction for mRNA tumor vaccines.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas Sintéticas/uso terapéutico , Vacunas de ARNm , Neoplasias/genética , Neoplasias/terapia
4.
Biomed Res Int ; 2020: 2892734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102576

RESUMEN

BACKGROUND: Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are widely spread across the world. Asymptomatic or inconspicuous CT/NG infections are difficult to diagnose and treat. Traditional methods have the disadvantages of low detection rate, inaccurate results, and long detection time. However, Xpert CT/NG makes up for the aforementioned shortcomings and has research value and popularization significance. METHODS: PubMed, Embase, Cochrane Library, and Web of Science were systematically searched, and studies were screened using Xpert CT/NG for diagnosing CT/NG. QUADAS-2 was used to evaluate the quality of the eligible studies. Then, two groups of researchers independently extracted data from these studies. Meta-analyses of sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve were conducted using Meta-DiSc 1.4. Finally, Deek's funnel plots were made using Stata 12.0 to evaluate publication bias. RESULTS: 14 studies were identified, and 46 fourfold tables were extracted in this meta-analysis. The pooled SEN, SPE, PLR, NLR, DOR, and AUC in diagnosing CT were 0.94 (95% confidence interval (CI): 0.93-0.95), 0.99 (95% CI: 0.99-1.00), 97.17 (95% CI: 56.76-166.32), 0.07 (95% CI: 0.04-0.12), 1857.25 (95% CI: 943.78-3654.86), and 0.9960, respectively. The pooled SEN, SPE, PLR, NLR, DOR, and AUC in diagnosing NG were 0.95 (95% CI: 0.93-0.96), 1.00 (95% CI: 1.00-1.00), 278.15 (95% CI: 152.41-507.63), 0.08 (95% CI: 0.06-0.12), 4290.70 (95% CI: 2161.78-8516.16), and 0.9980, respectively. CONCLUSIONS: Xpert CT/NG had high diagnostic sensitivity and specificity for CT and NG. However, more evidence is required to confirm that Xpert CT/NG might serve as the primary method for detecting CT and NG and even the gold standard for diagnosis in the future.


Asunto(s)
Infecciones por Chlamydia/diagnóstico , Gonorrea/diagnóstico , Área Bajo la Curva , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/patogenicidad , Gonorrea/microbiología , Humanos , Neisseria gonorrhoeae/patogenicidad , Oportunidad Relativa , Curva ROC , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA