Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 90(19): 11680-11687, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30191711

RESUMEN

Furin, a kind of trans-Golgi proprotein convertases, plays important role in various physiological processes. It is overexpressed in many cancers and relates to tumor growth and migration. In situ detection and imaging of furin is of great significance for obtaining real-time information about its activity. However, the previously reported fluorescent probes for furin usually failed to realize in situ detection and long-term bioimaging, because these probes are based on water-soluble fluorophores, which tend to diffuse away from the reaction sites after converted by furin. Such a problem can be addressed by designing a probe, which releases a precipitating fluorophore upon furin conversion. Herein, we developed a probe HPQF for in situ detection of endogenous furin activity and long-term bioimaging by integrating a strictly insoluble solid-state fluorophore 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (Cl-HPQ) with a furin specific peptide substrate (RVRR) through a self-immolative linker. The HPQF probe shows high selectivity and sensitivity to furin. Upon converted by furin, HPQF releases free Cl-HPQ, which precipitates near the enzyme active site. The precipitates emit bright solid-state fluorescence for in situ imaging. HPQF could truly visualize the location of intracellular furin, which was further confirmed by colocalization and immunofluorescence experiments. Excitingly, the long-term bioimaging was also achieved benefiting from its outstanding signal-stability and antidiffusion ability. HPQF was further utilized to monitor the level change of furin under stabilizing of hypoxia-inducible factor (HIF) regulated by cobalt chloride (CoCl2) as well as visualization of furin in MDA-MB-468 cell tumor tissues.


Asunto(s)
Colorantes Fluorescentes/química , Furina/metabolismo , Microscopía Fluorescente , Línea Celular Tumoral , Cobalto/química , Aparato de Golgi/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Péptidos/química , Péptidos/metabolismo
2.
ChemMedChem ; 12(3): 250-256, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28098432

RESUMEN

Mitochondria are double-membrane-bound organelles involved mainly in supplying cellular energy, but also play roles in signaling, cell differentiation, and cell death. Mitochondria are implicated in carcinogenesis, and therefore dozens of lethal signal transduction pathways converge on these organelles. Accordingly, mitochondria provide an alternative target for cancer management. In this study, F16, a drug that targets mitochondria, and chlorambucil (CBL), which is indicated for the treatment of selected human neoplastic diseases, were covalently linked, resulting in the synthesis of a multi-mitochondrial anticancer agent, FCBL. FCBL can associate with human serum albumin (HSA) to form an HSA-FCBL nanodrug, which selectively recognizes cancer cells, but not normal cells. Systematic investigations show that FCBL partially accumulates in cancer cell mitochondria to depolarize mitochondrial membrane potential (MMP), increase reactive oxygen species (ROS), and attack mitochondrial DNA (mtDNA). With this synergistic effect on multiple mitochondrial components, the nanodrug can effectively kill cancer cells and overcome multiple drug resistance. Furthermore, based on its therapeutic window, HSA-FCBL exhibits clinically significant differential cytotoxicity between normal and malignant cells. Finally, while drug dosage and drug resistance typically limit first-line mono-chemotherapy, HSA-FCBL, with its ability to compromise mitochondrial membrane integrity and damage mtDNA, is expected to overcome those limitations to become an ideal candidate for the treatment of neoplastic disease.


Asunto(s)
Antineoplásicos/toxicidad , Resistencia a Antineoplásicos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clorambucilo/química , Clorambucilo/toxicidad , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Microscopía Confocal , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA