Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glia ; 71(2): 245-258, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36106533

RESUMEN

Fractalkine (FKN) is a membrane-bound chemokine that can be cleaved by proteases such as ADAM 10, ADAM 17, and cathepsin S to generate soluble fragments. Studies using different forms of the soluble FKN yield conflicting results in vivo. These observations prompted us to investigate the function and pharmacology of two commonly used isoforms of FKN, a human full-length soluble FKN (sFKN), and a human chemokine domain only FKN (cdFKN). Both are prevalent in the literature and are often assumed to be functionally equivalent. We observed that recombinant sFKN and cdFKN exhibit similar potencies in a cell-based cAMP assay, but binding affinity for CX3CR1 was modestly different. There was a 10-fold difference in potency between sFKN and cdFKN when assessing their ability to stimulate ß-arrestin recruitment. Interestingly, high concentrations of FKN, regardless of cleavage variant, were ineffective at reducing pro-inflammatory microglial activation and may induce a pro-inflammatory response. This effect was observed in mouse and rat primary microglial cells as well as microglial cell lines. The inflammatory response was exacerbated in aged microglia, which is known to exhibit age-related inflammatory phenotypes. We observed the same effects in Cx3cr1-/- primary microglia and therefore speculate that an alternative FKN receptor may exist. Collectively, these data provide greater insights into the function and pharmacology of these common FKN reagents, which may clarify conflicting reports and urge greater caution in the selection of FKN peptides for use in in vitro and in vivo studies and the interpretation of results obtained using these differing peptides.


Asunto(s)
Quimiocina CX3CL1 , Microglía , Ratones , Ratas , Humanos , Animales , Anciano , Quimiocina CX3CL1/metabolismo , Microglía/metabolismo , Proteolisis , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Línea Celular
2.
Nat Chem Biol ; 16(7): 749-755, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483378

RESUMEN

Most drugs acting on G-protein-coupled receptors target the orthosteric binding pocket where the native hormone or neurotransmitter binds. There is much interest in finding allosteric ligands for these targets because they modulate physiologic signaling and promise to be more selective than orthosteric ligands. Here we describe a newly developed allosteric modulator of the ß2-adrenergic receptor (ß2AR), AS408, that binds to the membrane-facing surface of transmembrane segments 3 and 5, as revealed by X-ray crystallography. AS408 disrupts a water-mediated polar network involving E1223.41 and the backbone carbonyls of V2065.45 and S2075.46. The AS408 binding site is adjacent to a previously identified molecular switch for ß2AR activation formed by I3.40, P5.50 and F6.44. The structure reveals how AS408 stabilizes the inactive conformation of this switch, thereby acting as a negative allosteric modulator for agonists and positive allosteric modulator for inverse agonists.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/química , Antagonistas Adrenérgicos beta/química , Alprenolol/química , Norepinefrina/química , Receptores Adrenérgicos beta 2/química , Xinafoato de Salmeterol/química , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas Adrenérgicos beta/farmacología , Regulación Alostérica , Sitio Alostérico , Alprenolol/farmacología , Células HEK293 , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Norepinefrina/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Xinafoato de Salmeterol/farmacología , Termodinámica , Agua/química
3.
Nature ; 537(7619): 185-190, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27533032

RESUMEN

Morphine is an alkaloid from the opium poppy used to treat pain. The potentially lethal side effects of morphine and related opioids-which include fatal respiratory depression-are thought to be mediated by µ-opioid-receptor (µOR) signalling through the ß-arrestin pathway or by actions at other receptors. Conversely, G-protein µOR signalling is thought to confer analgesia. Here we computationally dock over 3 million molecules against the µOR structure and identify new scaffolds unrelated to known opioids. Structure-based optimization yields PZM21-a potent Gi activator with exceptional selectivity for µOR and minimal ß-arrestin-2 recruitment. Unlike morphine, PZM21 is more efficacious for the affective component of analgesia versus the reflexive component and is devoid of both respiratory depression and morphine-like reinforcing activity in mice at equi-analgesic doses. PZM21 thus serves as both a probe to disentangle µOR signalling and a therapeutic lead that is devoid of many of the side effects of current opioids.


Asunto(s)
Analgésicos Opioides/efectos adversos , Analgésicos Opioides/química , Descubrimiento de Drogas , Receptores Opioides mu/agonistas , Tiofenos/química , Tiofenos/farmacología , Urea/análogos & derivados , Analgesia/métodos , Analgésicos Opioides/farmacología , Animales , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Dolor/tratamiento farmacológico , Receptores Opioides mu/deficiencia , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Compuestos de Espiro/farmacología , Relación Estructura-Actividad , Tiofenos/efectos adversos , Urea/efectos adversos , Urea/química , Urea/farmacología
4.
Membranes (Basel) ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36837653

RESUMEN

As part of an ongoing effort to develop a drug targeting the type 1 cholecystokinin receptor (CCK1R) to help prevent and/or treat obesity, we recently performed a high throughput screening effort of small molecules seeking candidates that enhanced the action of the natural agonist, CCK, thus acting as positive allosteric modulators without exhibiting intrinsic agonist action. Such probes would be expected to act in a temporally finite way to enhance CCK action to induce satiety during and after a meal and potentially even modulate activity at the CCK1R in a high cholesterol environment present in some obese patients. The current work focuses on the best scaffold, representing tetracyclic molecules identified through high throughput screening we previously reported. Extensive characterization of the two top "hits" from the previous effort demonstrated them to fulfill the desired pharmacologic profile. We undertook analog-by-catalog expansion of this scaffold using 65 commercially available analogs. In this effort, we were able to eliminate an off-target effect observed for this scaffold while retaining its activity as a positive allosteric modulator of CCK1R in both normal and high cholesterol membrane environments. These insights should be useful in the rational medicinal chemical enhancement of this scaffold and in the future development of candidates to advance to pre-clinical proof-of-concept and to clinical trials.

5.
SLAS Discov ; 27(7): 384-394, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850480

RESUMEN

Obesity has become a prevailing health burden globally and particularly in the US. It is associated with many health problems, including cardiovascular disease, diabetes and poorer mental health. Hence, there is a high demand to find safe and effective therapeutics for sustainable weight loss. Cholecystokinin (CCK) has been implicated as one of the first gastrointestinal hormones to reduce overeating and suppress appetite by activating the type 1 cholecystokinin receptor (CCK1R). Several drug development campaigns have focused on finding CCK1R-specific agonists, which showed promising efficacy for reducing meal size and weight, but fell short on FDA approval, likely due to side effects associated with potent, long-lasting activation of CCK1Rs. Positive allosteric modulators (PAMs) without inherent agonist activity have been proposed to overcome the shortcomings of traditional, orthosteric agonists and restore CCK1R signaling in failing physiologic systems. However, drug discovery campaigns searching for such novel acting CCK1R agents remain limited. Here we report a high-throughput screening effort and the establishment of a testing funnel, which led to the identification of novel CCK1R modulators. We utilized IP-One accumulation to develop robust functional equilibrium assays tailored to either detect PAMs, agonists or non-specific activators. In addition, we established the CCK1R multiplex PAM assay as a novel method to evaluate functional selectivity capable of recording CCK1R-induced cAMP accumulation and ß-arrestin recruitment in the same well. This selection and arrangement of methods enabled the discovery of three scaffolds, which we characterized and validated in an array of functional and binding assays. We found two hits incorporating a tetracyclic scaffold that significantly enhanced CCK signaling at CCK1Rs without intrinsically activating CCK1Rs in an overexpressing system. Our results demonstrate that a well-thought-out testing funnel can identify small molecules with a distinct pharmacological profile and provides an important milestone for the development of novel potential treatments of obesity.


Asunto(s)
Colecistoquinina , Receptores de Colecistoquinina , Colecistoquinina/metabolismo , Colecistoquinina/uso terapéutico , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores de Colecistoquinina/agonistas , Receptores de Colecistoquinina/metabolismo , Receptores de Colecistoquinina/uso terapéutico , beta-Arrestinas/metabolismo
6.
Biochem Pharmacol ; 185: 114451, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545115

RESUMEN

The secretin receptor (SCTR) is a prototypic Class B1 G protein-coupled receptor (GPCR) that represents a key target for the development of therapeutics for the treatment of cardiovascular, gastrointestinal, and metabolic disorders. However, no non-peptidic molecules targeting this receptor have yet been disclosed. Using a high-throughput screening campaign directed at SCTR to identify small molecule modulators, we have identified three structurally related scaffolds positively modulating SCTRs. Here we outline a comprehensive study comprising a structure-activity series based on commercially available analogs of the three hit scaffold sets A (2-sulfonyl pyrimidines), B (2-mercapto pyrimidines) and C (2-amino pyrimidines), which revealed determinants of activity, cooperativity and specificity. Structural optimization of original hits resulted in analog B2, which substantially enhances signaling of truncated secretin peptides and prolongs residence time of labeled secretin up to 13-fold in a dose-dependent manner. Furthermore, we found that investigated compounds display structural similarity to positive allosteric modulators (PAMs) active at the glucagon-like peptide-1 receptor (GLP-1R), and we were able to confirm cross-recognition of that receptor by a subset of analogs. Studies using SCTR and GLP-1R mutants revealed that scaffold A, but not B and C, likely acts via two distinct mechanisms, one of which constitutes covalent modification of Cys-347GLP-1R known from GLP-1R-selective modulators. The scaffolds identified in this study might not only serve as novel pharmacologic tools to decipher SCTR- or GLP-1R-specific signaling pathways, but also as structural leads to elucidate allosteric binding sites facilitating the future development of orally available therapeutic approaches targeting these receptors.


Asunto(s)
Descubrimiento de Drogas/métodos , Pirimidinas/química , Pirimidinas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Unión Proteica/fisiología , Pirimidinas/farmacología , Ratas , Relación Estructura-Actividad
7.
Front Endocrinol (Lausanne) ; 12: 789957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950108

RESUMEN

Drugs useful in prevention/treatment of obesity could improve health. Cholecystokinin (CCK) is a key regulator of appetite, working through the type 1 CCK receptor (CCK1R); however, full agonists have not stimulated more weight loss than dieting. We proposed an alternate strategy to target this receptor, while reducing likelihood of side effects and/or toxicity. Positive allosteric modulators (PAMs) with minimal intrinsic agonist activity would enhance CCK action, while maintaining spatial and temporal characteristics of physiologic signaling. This could correct abnormal stimulus-activity coupling observed in a high-cholesterol environment observed in obesity. We utilized high-throughput screening to identify a molecule with this pharmacological profile and studied its basis of action. Compound 1 was a weak partial agonist, with PAM activity to enhance CCK action at CCK1R, but not CCK2R, maintained in both normal and high cholesterol. Compound 1 (10 µM) did not exhibit agonist activity or stimulate internalization of CCK1R. It enhanced CCK activity by slowing the off-rate of bound hormone, increasing its binding affinity. Computational docking of Compound 1 to CCK1R yielded plausible poses. A radioiodinatable photolabile analogue retained Compound 1 pharmacology and covalently labeled CCK1R Thr211, consistent with one proposed pose. Our study identifies a novel, selective, CCK1R PAM that binds to the receptor to enhance action of CCK-8 and CCK-58 in both normal and disease-mimicking high-cholesterol environments. This facilitates the development of compounds that target the physiologic spatial and temporal engagement of CCK1R by CCK that underpins its critical role in metabolic regulation.


Asunto(s)
Quimiocinas CC/agonistas , Quimiocinas CC/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/farmacología , Colesterol/metabolismo , Descubrimiento de Drogas/métodos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Células CHO , Colecistoquinina/química , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Macaca fascicularis , Ratones , Ratas
8.
SLAS Discov ; 26(1): 1-16, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32749201

RESUMEN

The secretin receptor (SCTR), a prototypical class B G protein-coupled receptor (GPCR), exerts its effects mainly by activating Gαs proteins upon binding of its endogenous peptide ligand secretin. SCTRs can be found in a variety of tissues and organs across species, including the pancreas, stomach, liver, heart, lung, colon, kidney, and brain. Beyond that, modulation of SCTR-mediated signaling has therapeutic potential for the treatment of multiple diseases, such as heart failure, obesity, and diabetes. However, no ligands other than secretin and its peptide analogs have been described to regulate SCTRs, probably due to inherent challenges in family B GPCR drug discovery. Here we report creation of a testing funnel that allowed targeted detection of SCTR small-molecule activators. Pursuing the strategy to identify positive allosteric modulators (PAMs), we established a unique primary screening assay employing a mixture of three orthosteric stimulators that was compared in a screening campaign testing 12,000 small-molecule compounds. Beyond that, we developed a comprehensive set of secondary assays, such as a radiolabel-free target engagement assay and a NanoBiT (NanoLuc Binary Technology)-based approach to detect ß-arrestin-2 recruitment, all feasible in a high-throughput environment as well as capable of profiling ligands and hits regarding their effect on binding and receptor function. This combination of methods enabled the discovery of five promising scaffolds, four of which have been validated and further characterized with respect to their allosteric activities. We propose that our results may serve as starting points for developing the first in vivo active small molecules targeting SCTRs.


Asunto(s)
Desarrollo de Medicamentos/métodos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Receptores de la Hormona Gastrointestinal/química , Animales , Ciencias Bioconductuales , Células CHO , Calcio/metabolismo , Proteínas Portadoras , Cricetulus , AMP Cíclico/metabolismo , Expresión Génica , Genes Reporteros , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ligandos , Péptidos/química , Péptidos/farmacología , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
9.
J Med Chem ; 60(11): 4693-4713, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28489379

RESUMEN

By means of a formal structural hybridization of the antipsychotic drug aripiprazole and the heterocyclic catecholamine surrogates present in the ß2-adrenoceptor agonists procaterol and BI-167107 (4), we designed and synthesized a collection of novel hydroxy-substituted heteroarylpiperazines and heteroarylhomopiperazines with high dopamine D2 receptor (D2R) affinity. In contrast to the weak agonistic behavior of aripiprazole, these ligands are capable of effectively mimicking those interactions of dopamine and the D2R that are crucial for an active state, leading to the recruitment of ß-arrestin-2. Interestingly, some ligands show considerably lower intrinsic activity in guanine nucleotide exchange experiments at D2R and consequently represent biased agonists favoring ß-arrestin-2 recruitment over canonical G protein activation. The ligands' agonistic properties are substantially driven by the presence of an endocyclic H-bond donor.


Asunto(s)
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacología , Piperazinas/química , Piperazinas/farmacología , Receptores de Dopamina D2/efectos de los fármacos , beta-Arrestinas/química , Animales , Células CHO , Cricetulus , Agonistas de Dopamina/metabolismo , Humanos , Receptores de Dopamina D2/metabolismo , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA