Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biol Chem ; 404(2-3): 169-178, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35977096

RESUMEN

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and imported in a posttranslational manner. Intricate protein import machineries have evolved that catalyze the different stages of translocation. In humans, PEX5L was found to be an essential component of the peroxisomal translocon. PEX5L is the main receptor for substrate proteins carrying a peroxisomal targeting signal (PTS). Substrates are bound by soluble PEX5L in the cytosol after which the cargo-receptor complex is recruited to peroxisomal membranes. Here, PEX5L interacts with the docking protein PEX14 and becomes part of an integral membrane protein complex that facilitates substrate translocation into the peroxisomal lumen in a still unknown process. In this study, we show that PEX5L containing complexes purified from human peroxisomal membranes constitute water-filled pores when reconstituted into planar-lipid membranes. Channel characteristics were highly dynamic in terms of conductance states, selectivity and voltage- and substrate-sensitivity. Our results show that a PEX5L associated pore exists in human peroxisomes, which can be activated by receptor-cargo complexes.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Proteínas Portadoras/metabolismo , Transporte de Proteínas , Peroxisomas/metabolismo
2.
Cell Mol Life Sci ; 78(5): 2355-2370, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32997199

RESUMEN

Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Clatrina/metabolismo , Endocitosis , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Sitios de Unión/genética , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Electrónica , Mutación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas
3.
Proc Natl Acad Sci U S A ; 116(21): 10568-10575, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31068459

RESUMEN

Jasmonates are vital plant hormones that not only act in the stress response to biotic and abiotic influences, such as wounding, pathogen attack, and cold acclimation, but also drive developmental processes in cooperation with other plant hormones. The biogenesis of jasmonates starts in the chloroplast, where several enzymatic steps produce the jasmonate precursor 12-oxophytodienoic acid (OPDA) from α-linolenic acid. OPDA in turn is exported into the cytosol for further conversion into active jasmonates, which subsequently induces the expression of multiple genes in the nucleus. Despite its obvious importance, the export of OPDA across the chloroplast membranes has remained elusive. In this study, we characterized a protein residing in the chloroplast outer membrane, JASSY, which has proven indispensable for the export of OPDA from the chloroplast. We provide evidence that JASSY has channel-like properties and propose that it thereby facilitates OPDA transport. Consequently, a lack of JASSY in Arabidopsis leads to a deficiency in accumulation of jasmonic acids, which results in impaired expression of jasmonate target genes on exposure to various stresses. This results in plants that are more susceptible to pathogen attack and also exhibit defects in cold acclimation.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Oxilipinas/metabolismo , Aclimatación , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta
4.
Nat Cell Biol ; 22(3): 274-281, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094691

RESUMEN

During endoplasmic-reticulum-associated protein degradation (ERAD), misfolded proteins are polyubiquitinated, extracted from the ER membrane and degraded by the proteasome1-4. In a process called retrotranslocation, misfolded luminal proteins first need to traverse the ER membrane before ubiquitination can occur in the cytosol. It was suggested that the membrane-embedded ubiquitin ligase Hrd1 forms a retrotranslocation pore regulated by cycles of auto- and deubiquitination5-8. However, the mechanism by which auto-ubiquitination affects Hrd1 and allows polypeptides to cross the membrane and whether Hrd1 forms a membrane-spanning pore remained unknown. Here, using purified Hrd1 incorporated into different model membranes, we show that Hrd1 auto-ubiquitination leads to the opening of a pore. Substrate binding increases the pore size and its activity, whereas deubiquitination closes the pore and renders it unresponsive to substrate. We identify two binding sites for misfolded proteins in Hrd1, a low-affinity luminal site and a high-affinity cytoplasmic site formed following auto-ubiquitination of specific lysine residues in Hrd1's RING domain. We propose that the affinity difference between the luminal and cytoplasmic binding sites provides the initial driving force for substrate movement through Hrd1.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Sitios de Unión , Carboxipeptidasas/metabolismo , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos , Dominios Proteicos , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/química
5.
Elife ; 62017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28857742

RESUMEN

Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Transporte Biológico/fisiología , Cardiolipinas/química , Cardiolipinas/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mitocondrias/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolípidos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
6.
Cell Metab ; 21(5): 756-63, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25955211

RESUMEN

The mitochondrial inner membrane is highly folded and displays a complex molecular architecture. Cristae junctions are highly curved tubular openings that separate cristae membrane invaginations from the surrounding boundary membrane. Despite their central role in many vital cellular processes like apoptosis, the details of cristae junction formation remain elusive. Here we identify Mic10, a core subunit of the recently discovered MICOS complex, as an inner mitochondrial membrane protein with the ability to change membrane morphology in vitro and in vivo. We show that Mic10 spans the inner membrane in a hairpin topology and that its ability to sculpt membranes depends on oligomerization through a glycine-rich motif. Oligomerization mutants fail to induce curvature in model membranes, and when expressed in yeast, mitochondria display an altered inner membrane architecture characterized by drastically decreased numbers of cristae junctions. Thus, we demonstrate that membrane sculpting by Mic10 is essential for cristae junction formation.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/análisis , Membranas Mitocondriales/química , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales , Datos de Secuencia Molecular , Multimerización de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA