Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mamm Genome ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837040

RESUMEN

Hypercholesterolemia raises the risk for cardiovascular complications and overall health. Hypercholesterolemia is common, affecting 10% of the general population of the US, and heritable. Most individuals with hypercholesterolemia have a polygenic predisposition to the condition. Previously we identified a quantitative trait locus, Tachol1, linked to hypercholesterolemia on mouse chromosome 1 (Chr1) in a cross between C57BL/6J (B6) and TALLYHO/JngJ (TH) mice, a polygenic model for human obesity, type 2 diabetes and hyperlipidemia. Subsequently, using congenic mice that carry a TH-derived genomic segment of Chr1 on a B6 background, we demonstrated that the distal segment of Chr1, where Tachol1 maps, is necessary to cause hypercholesterolemia, as well as diet-induced obesity. In this study, we generated overlapping subcongenic lines to the distal segment of congenic region and characterized subcongenic mice carrying the smallest TH region of Tachol1, ~ 16.2 Mb in size (B6.TH-Chr1-16.2 Mb). Both male and female B6.TH-Chr1-16.2 Mb mice showed a significantly increased plasma total cholesterol levels compared to B6 on both chow and high fat (HF) diet. B6.TH-Chr1-16.2 Mb mice also had greater fat mass than B6 on HF diet, without increasing food intake. The gene and protein expression levels of absent in melanoma 2 (Aim2) gene were significantly upregulated in B6.TH-Chr1-16.2 Mb mice compared to B6. In summary, we confirmed the effect of Tachol1 on hypercholesterolemia and diet-induced obesity using subcongenic analysis.

2.
J Virol ; 96(6): e0218421, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080423

RESUMEN

SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease. HCP treatment groups had elevated receptor binding domain (RBD) and nucleocapsid IgG titers in the serum; however, Beta VoC viral RNA burden in the lung and brain was not decreased due to HCP treatment. While mice could be protected from WA-1 or Alpha challenge with a single dose of HCP, six doses of HCP could not decrease mortality of Delta challenged mice. Overall, these data demonstrate that VoC have enhanced immune evasion and this work underscores the need for in vivo models to evaluate future emerging strains. IMPORTANCE Emerging SARS-CoV-2 VoC are posing new problems regarding vaccine and monoclonal antibody efficacy. To better understand immune evasion tactics of the VoC, we utilized passive immunization to study the effect of early-pandemic SARS-CoV-2 HCP against, Alpha, Beta, and Delta VoC. We observed that HCP from a human infected with the original SARS-CoV-2 was unable to control lethality of Alpha, Beta, or Delta VoC in the K18-hACE2 transgenic mouse model of SARS-CoV-2 infection. Our findings demonstrate that passive immunization can be used as a model to evaluate immune evasion of emerging VoC strains.


Asunto(s)
COVID-19/terapia , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/prevención & control , Modelos Animales de Enfermedad , Humanos , Inmunización Pasiva , Melfalán , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , gammaglobulinas , Sueroterapia para COVID-19
3.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298315

RESUMEN

The mechanistic target of rapamycin (mTOR) kinase is a component of two signaling complexes that are known as mTOR complex 1 (mTORC1) and mTORC2. We sought to identify mTOR-phosphorylated proteins that are differently expressed in clinically resected clear cell renal cell carcinoma (ccRCC) relative to pair-matched normal renal tissue. Using a proteomic array, we found N-Myc Downstream Regulated 1 (NDRG1) showed the greatest increase (3.3-fold) in phosphorylation (on Thr346) in ccRCC. This was associated with an increase in total NDRG1. RICTOR is a required subunit in mTORC2, and its knockdown decreased total and phospho-NDRG1 (Thr346) but not NDRG1 mRNA. The dual mTORC1/2 inhibitor, Torin 2, significantly reduced (by ~100%) phospho-NDRG1 (Thr346). Rapamycin is a selective mTORC1 inhibitor that had no effect on the levels of total NDRG1 or phospho-NDRG1 (Thr346). The reduction in phospho-NDRG1 (Thr346) due to the inhibition of mTORC2 corresponded with a decrease in the percentage of live cells, which was correlated with an increase in apoptosis. Rapamycin had no effect on ccRCC cell viability. Collectively, these data show that mTORC2 mediates the phosphorylation of NDRG1 (Thr346) in ccRCC. We hypothesize that RICTOR and mTORC2-mediated phosphorylation of NDRG1 (Thr346) promotes the viability of ccRCC cells.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Fosforilación , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
4.
Cancer Control ; 29: 10732748221074051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35067084

RESUMEN

INTRODUCTION: The prototype DNA hypomethylating agents 5-azacytidine (5AC) and decitabine (DAC) are currently FDA-approved for treatment of blood and bone marrow disorders like myelodysplastic syndrome. 5AC and DAC are considered similar drugs and were shown to induce histone modifications that modulate gene expression. The aim of this study is to compare the effect of both drugs on histone acetylation and methylation at multiple histone amino acids residues. METHODS: Mass spectrometry was used to compare the effect of both drugs on 95 different histone posttranslational modifications (PTMs) in leukemia cells. ChIP-Seq analysis was used to compare the impact of both drugs on the genome-wide acetylation of the H3K9 mark using primary leukemia cells from six de-identified AML patients. RESULTS: Both DAC and 5AC induced histone PTMs in different histone isoforms like H1.4, H2A, H3, H3.1, and H4. Changes in both histone methylation and acetylation were observed with both drugs; however, there were distinct differences in the histone modifications induced by the two drugs. Since both drugs were shown to increase the activity of the HDAC SIRT6 previously, we tested the effect of 5AC on the acetylation of H3K9, the physiological substrate SIRT6, using ChIP-Seq analysis and compared it to the previously published DAC-induced changes. Significant H3K9 acetylation changes (P< .05) were detected at 925 genes after 5AC treatment vs only 182 genes after DAC treatment. Nevertheless, the gene set modified by 5AC was different from that modified by DAC with only ten similar genes modulated by both drugs. CONCLUSION: Despite similarity in chemical structure and DNA hypomethylating activity, 5AC and DAC induced widely different histone PTMs and considering them interchangeable should be carefully evaluated. The mechanism of these histone PTM changes is not clear and may involve modulation of the activity or the expression of the enzymes inducing histone PTMs.


Asunto(s)
Acetilación/efectos de los fármacos , Azacitidina/farmacología , Metilación de ADN/efectos de los fármacos , Decitabina/farmacología , Histonas/efectos de los fármacos , Línea Celular Tumoral , Humanos , Leucemia/tratamiento farmacológico , Procesamiento Proteico-Postraduccional/efectos de los fármacos
5.
BMC Genomics ; 22(1): 259, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845768

RESUMEN

BACKGROUND: Prior work demonstrated that female rats (but not their male littermates) exposed to methamphetamine become hypersensitive to myocardial ischemic injury. Importantly, this sex-dependent effect persists following 30 days of subsequent abstinence from the drug, suggesting that it may be mediated by long term changes in gene expression that are not rapidly reversed following discontinuation of methamphetamine use. The goal of the present study was to determine whether methamphetamine induces sex-dependent changes in myocardial gene expression and whether these changes persist following subsequent abstinence from methamphetamine. RESULTS: Methamphetamine induced changes in the myocardial transcriptome were significantly greater in female hearts than male hearts both in terms of the number of genes affected and the magnitude of the changes. The largest changes in female hearts involved genes that regulate the circadian clock (Dbp, Per3, Per2, BMal1, and Npas2) which are known to impact myocardial ischemic injury. These genes were unaffected by methamphetamine in male hearts. All changes in gene expression identified at day 11 returned to baseline by day 30. CONCLUSIONS: These data demonstrate that female rats are more sensitive than males to methamphetamine-induced changes in the myocardial transcriptome and that methamphetamine does not induce changes in myocardial transcription that persist long term after exposure to the drug has been discontinued.


Asunto(s)
Relojes Circadianos , Metanfetamina , Animales , Ritmo Circadiano , Femenino , Corazón , Masculino , Miocardio , Ratas , Transcripción Genética
6.
J Am Soc Nephrol ; 31(8): 1746-1760, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32587074

RESUMEN

BACKGROUND: Oxidative stress in adipocyte plays a central role in the pathogenesis of obesity as well as in the associated cardiovascular complications. The putative uremic toxin indoxyl sulfate induces oxidative stress and dramatically alters adipocyte phenotype in vitro. Mice that have undergone partial nephrectomy serve as an experimental model of uremic cardiomyopathy. This study examined the effects on adipocytes of administering a peptide that reduces oxidative stress to the mouse model. METHODS: A lentivirus vector introduced the peptide NaKtide with an adiponectin promoter into the mouse model of experimental uremic cardiomyopathy, intraperitoneally. Then adipocyte-specific expression of the peptide was assessed for mice fed a standard diet compared with mice fed a western diet enriched in fat and fructose. RESULTS: Partial nephrectomy induced cardiomyopathy and anemia in the mice, introducing oxidant stress and an altered molecular phenotype of adipocytes that increased production of systemic inflammatory cytokines instead of accumulating lipids, within 4 weeks. Consumption of a western diet significantly worsened the adipocyte oxidant stress, but expression of NaKtide in adipocytes completely prevented the worsening. The peptide-carrying lentivirus achieved comparable expression in skeletal muscle, but did not ameliorate the disease phenotype. CONCLUSIONS: Adipocyte-specific expression of NaKtide, introduced with a lentiviral vector, significantly ameliorated adipocyte dysfunction and uremic cardiomyopathy in partially nephrectomized mice. These data suggest that the redox state of adipocytes controls the development of uremic cardiomyopathy in mice subjected to partial nephrectomy. If confirmed in humans, the oxidative state of adipocytes may be a therapeutic target in chronic renal failure.


Asunto(s)
Adipocitos/metabolismo , Cardiomiopatías/etiología , Fragmentos de Péptidos/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Uremia/complicaciones , Animales , Apoptosis , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Nefrectomía , Estrés Oxidativo
7.
Am J Physiol Gastrointest Liver Physiol ; 319(5): G626-G635, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877213

RESUMEN

Obesity is linked to nonalcoholic steatohepatitis. Peroxisome proliferator-activated receptor-α (PPARα) regulates lipid metabolism. Cytochrome P-450 2A5 (CYP2A5) is a potential antioxidant and CYP2A5 induction by ethanol is CYP2E1 dependent. High-fat diet (HFD)-induced obesity and steatosis are more severe in CYP2A5 knockout (cyp2a5-/-) mice than in wild-type mice although PPARα is elevated in cyp2a5-/- mice. To examine why the upregulated PPARα failed to prevent the enhanced steatosis in cyp2a5-/- mice, we abrogate the upregulated PPARα in cyp2a5-/- mice by cross-breeding cyp2a5-/- mice with PPARα knockout (pparα-/-) mice to create pparα-/-/cyp2a5-/- mice. The pparα-/-/cyp2a5-/- mice, pparα-/- mice, and cyp2a5-/- mice were fed HFD to induce steatosis. After HFD feeding, more severe steatosis was developed in pparα-/-/cyp2a5-/- mice than in pparα-/- mice and cyp2a5-/- mice. The pparα-/-/cyp2a5-/- mice and pparα-/- mice exhibited comparable and impaired lipid metabolism. Elevated serum alanine transaminase and liver interleukin-1ß, liver inflammatory cell infiltration, and foci of hepatocellular ballooning were observed in pparα-/-/cyp2a5-/- mice but not in pparα-/- mice and cyp2a5-/- mice. In pparα-/-/cyp2a5-/- mice, although redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 and its target antioxidant genes were upregulated as a compensation, thioredoxin was suppressed, and phosphorylation of JNK and formation of nitrotyrosine adduct were increased. Liver glutathione was decreased, and lipid peroxidation was increased. Interestingly, inflammation and fibrosis were all observed within the clusters of lipid droplets, and these lipid droplet clusters were all located inside the area with CYP2E1-positive staining. These results suggest that HFD-induced fibrosis in pparα-/-/cyp2a5-/- mice is associated with steatosis, and CYP2A5 interacts with PPARα to participate in regulating steatohepatitis-associated fibrosis.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Familia 2 del Citocromo P450/genética , Dieta Alta en Grasa/efectos adversos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/genética , Animales , Peso Corporal , Gotas Lipídicas/metabolismo , Peroxidación de Lípido , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/complicaciones
8.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824688

RESUMEN

(1) Background: Recently we have noted that adipocyte specific expression of the peptide, NaKtide, which was developed to attenuate the Na,K-ATPase oxidant amplification loop, could ameliorate the phenotypical features of uremic cardiomyopathy. We performed this study to better characterize the cellular transcriptomes that are involved in various biological pathways associated with adipocyte function occurring with renal failure. (2) Methods: RNAseq was performed on the visceral adipose tissue of animals subjected to partial nephrectomy. Specific expression of NaKtide in adipocytes was achieved using an adiponectin promoter. To better understand the cause of gene expression changes in vivo, 3T3L1 adipocytes were exposed to indoxyl sulfate (IS) or oxidized low density lipoprotein (oxLDL), with and without pNaKtide (the cell permeant form of NaKtide). RNAseq was also performed on these samples. (3) Results: We noted a large number of adipocyte genes were altered in experimental renal failure. Adipocyte specific NaKtide expression reversed most of these abnormalities. High correlation with some cardiac specific phenotypical features was noted amongst groups of these genes. In the murine adipocytes, both IS and oxLDL induced similar pathway changes as were noted in vivo, and pNaKtide appeared to reverse these changes. Network analysis demonstrated tremendous similarities between the network revealed by gene expression analysis with IS compared with oxLDL, and the combined in vitro dataset was noted to also have considerable similarity to that seen in vivo with experimental renal failure. (4) Conclusions: This study suggests that the myriad of phenotypical features seen with experimental renal failure may be fundamentally linked to oxidant stress within adipocytes.


Asunto(s)
Adipocitos/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transcriptoma , Células 3T3 , Animales , Redes Reguladoras de Genes , Indicán/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/genética , ATPasa Intercambiadora de Sodio-Potasio/genética
9.
Mamm Genome ; 28(11-12): 487-497, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28983685

RESUMEN

The TALLYHO (TH) mouse presents a metabolic syndrome of obesity, type 2 diabetes, and hyperlipidemia. Highly significant quantitative trait loci (QTLs) linked to adiposity and hypercholesterolemia were previously identified on chromosome (Chr) 1 in a genome-wide scan of F2 mice from C57BL/6J (B6) x TH. In this study, we generated congenic mouse strains that carry the Chr 1 QTLs derived from TH on a B6 background; B6.TH-Chr1-128Mb (128Mb in size) and B6.TH-Chr1-92Mb (92Mb in size, proximally overlapping). We characterized these congenic mice on chow and high fat (HF) diets. On chow, B6.TH-Chr1-128Mb congenic mice exhibited a slightly larger body fat mass compared with B6.TH-Chr1-92Mb congenic and B6 mice, while body fat mass between B6.TH-Chr1-92Mb congenic and B6 mice was comparable. Plasma total cholesterol levels were significantly higher in B6.TH-Chr1-128Mb congenics compared to B6.TH-Chr1-92Mb congenic and B6 mice. Again, there was no difference in plasma total cholesterol levels between B6.TH-Chr1-92Mb congenic and B6 mice. All animals gained more body fat and exhibited higher plasma total cholesterol levels when fed HF diets than fed chow, but these increases were greater in B6.TH-Chr1-128Mb congenics than in B6.TH-Chr1-92Mb congenic and B6 mice. These results confirmed the effect of the 128Mb TH segment from Chr 1 on body fat and plasma cholesterol values and showed that the distal segment of Chr 1 from TH is necessary to cause both phenotypes. Through bioinformatic approaches, we generated a list of potential candidate genes within the distal region of Chr 1 and tested Ifi202b and Apoa2. We conclude that Chr 1 QTLs largely confer obesity and hypercholesterolemia in TH mice and can be promising targets for identifying susceptibility genes. Congenic mouse strains will be a valuable resource for gene identification.


Asunto(s)
Cromosomas de los Mamíferos/genética , Hipercolesterolemia/genética , Obesidad/genética , Sitios de Carácter Cuantitativo/genética , Tejido Adiposo , Animales , Colesterol/genética , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/métodos , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Fenotipo
10.
BMC Genomics ; 17(1): 907, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27835940

RESUMEN

BACKGROUND: The TALLYHO/Jng (TH) mouse is a polygenic model for obesity and type 2 diabetes first described in the literature in 2001. The origin of the TH strain is an outbred colony of the Theiler Original strain and mice derived from this source were selectively bred for male hyperglycemia establishing an inbred strain at The Jackson Laboratory. TH mice manifest many of the disease phenotypes observed in human obesity and type 2 diabetes. RESULTS: We sequenced the whole genome of TH mice maintained at Marshall University to a depth of approximately 64.8X coverage using data from three next generation sequencing runs. Genome-wide, we found approximately 4.31 million homozygous single nucleotide polymorphisms (SNPs) and 1.10 million homozygous small insertions and deletions (indels) of which 98,899 SNPs and 163,720 indels were unique to the TH strain compared to 28 previously sequenced inbred mouse strains. In order to identify potentially clinically-relevant genes, we intersected our list of SNP and indel variants with human orthologous genes in which variants were associated in GWAS studies with obesity, diabetes, and metabolic syndrome, and with genes previously shown to confer a monogenic obesity phenotype in humans, and found several candidate variants that could be functionally tested using TH mice. Further, we filtered our list of variants to those occurring in an obesity quantitative trait locus, tabw2, identified in TH mice and found a missense polymorphism in the Cidec gene and characterized this variant's effect on protein function. CONCLUSIONS: We generated a complete catalog of variants in TH mice using the data from whole genome sequencing. Our findings will facilitate the identification of causal variants that underlie metabolic diseases in TH mice and will enable identification of candidate susceptibility genes for complex human obesity and type 2 diabetes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Animales , Células COS , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Obesidad/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
11.
Mol Immunol ; 170: 156-169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692097

RESUMEN

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ADN , Factores de Transcripción , Animales , Femenino , Humanos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Interferones/metabolismo , Interferones/inmunología , Interferones/genética , Recurrencia Local de Neoplasia/inmunología , ARN Bicatenario/inmunología , Transducción de Señal/inmunología , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/inmunología
12.
Toxicol Appl Pharmacol ; 272(2): 476-89, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23845593

RESUMEN

The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 µg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts.


Asunto(s)
Biología Computacional/métodos , Contaminantes Ambientales/toxicidad , Nanotubos de Carbono/toxicidad , Neumonía/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Transcriptoma , Animales , Líquido del Lavado Bronquioalveolar , Células Cultivadas , Biología Computacional/estadística & datos numéricos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Perfilación de la Expresión Génica , Exposición por Inhalación , Masculino , Cadenas de Markov , Ratones , Ratones Endogámicos C57BL , Método de Montecarlo , Neumonía/genética , Neumonía/inmunología , Neumonía/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Transducción de Señal/efectos de los fármacos
13.
Cancer Invest ; 31(1): 24-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193970

RESUMEN

Targeting the nuclear factor kappa B (NFκB) pathway is proposed as therapy for chronic lymphocytic leukemia (CLL). We hypothesized that an omega-3 fatty acids (n-3) supplement would suppress NFκB activation in lymphocytes of Rai Stage 0-1 CLL patients. The initial dose of 2.4 g n-3/day was gradually increased to 7.2 g n-3/day. After n-3 consumption: 1) plasma n-3 increased; 2) NFκB activation was suppressed in lymphocytes; 3) in vitro sensitivity of lymphocytes to doxorubicin was increased; and 4) expression of 32 genes in lymphocytes was significantly decreased.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Linfocitos/metabolismo , FN-kappa B/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Suplementos Dietéticos , Doxorrubicina/uso terapéutico , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-3/sangre , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero/genética
14.
Cancer Rep (Hoboken) ; 6(3): e1746, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36382570

RESUMEN

BACKGROUND: Previous population health studies examining adults with acute myeloid leukemia (AML); however many of these, such as the Cancer Genome Atlas, are derived from databases collected by large urban centers. Due to its unique industry and environmental exposures, we hypothesized the West Virginia Appalachian population may have different mutational trends and clinical outcomes. AIMS: To address the concern of under-representation of rural minorities in cancer genomic databases, we performed exploratory whole exome sequencing in patients with newly diagnosed AML in rural Appalachia. METHODS & RESULTS: Correlations between genetic variants and clinical outcome variables were examined via retrospective chart review. A total of 26 patients were identified and whole exome sequencing was performed. Median age was 68 years old. Twenty-one patients had de novo AML (84%). As per European LeukemiaNet (ELN) criteria, 8 patients were favorable (32%), 12 were intermediate (48%), and 5 were adverse risk (20%). Eight patients proceeded to transplant. The median progression-free survival and overall survival were 16.5 months and 26.6 months, respectively. We noted an increased tumor mutation burden and a higher frequency of specific known driver mutations when compared to The Cancer Genome Atlas database; we also found novel mutations in MUC3A, MUC5AC, HCAR3, ORT2B, and PABPC. Survival outcomes were slightly lower than national average and BCOR mutation correlated with inferior outcomes. CONCLUSION: Our findings provide novel insight into detrimental mutations in AML in a rural, underrepresented population. We discovered several novel mutations and higher frequency of some known driver mutations, which will help us identify therapeutic targets to improve patient outcomes.


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Humanos , Anciano , Estudios Retrospectivos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Biomarcadores de Tumor , Región de los Apalaches/epidemiología
15.
J Am Heart Assoc ; 12(7): e028023, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36974758

RESUMEN

Background Ischemic cardiovascular disease is the leading cause of death worldwide. Current pharmacologic therapy has multiple limitations, and patients remain symptomatic despite maximal medical therapies. Deficiency or inhibition of thymidine phosphorylase (TYMP) in mice reduces thrombosis, suggesting that TYMP could be a novel therapeutic target for patients with acute myocardial infarction (AMI). Methods and Results A mouse AMI model was established by ligation of the left anterior descending coronary artery in C57BL/6J wild-type and TYMP-deficient (Tymp-/-) mice. Cardiac function was monitored by echocardiography or Langendorff assay. TYMP-deficient hearts had lower baseline contractility. However, cardiac function, systolic left ventricle anterior wall thickness, and diastolic wall strain were significantly greater 4 weeks after AMI compared with wild-type hearts. TYMP deficiency reduced microthrombus formation after AMI. TYMP deficiency did not affect angiogenesis in either normal or infarcted myocardium but increased arteriogenesis post-AMI. TYMP deficiency enhanced the mobilization of bone marrow stem cells and promoted mesenchymal stem cell (MSC) proliferation, migration, and resistance to inflammation and hypoxia. TYMP deficiency increased the number of larger MSCs and decreased matrix metalloproteinase-2 expression, resulting in a high homing capability. TYMP deficiency induced constitutive AKT phosphorylation in MSCs but reduced expression of genes associated with retinoid-interferon-induced mortality-19, a molecule that enhances cell death. Inhibition of TYMP with its selective inhibitor, tipiracil, phenocopied TYMP deficiency, improved post-AMI cardiac function and systolic left ventricle anterior wall thickness, attenuated diastolic stiffness, and reduced infarct size. Conclusions This study demonstrated that TYMP plays an adverse role after AMI. Targeting TYMP may be a novel therapy for patients with AMI.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio , Ratones , Animales , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Modelos Animales de Enfermedad
17.
J Toxicol Environ Health A ; 75(18): 1129-53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22891886

RESUMEN

Concerns over the potential for multiwalled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n = 160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 d postexposure. By using pairwise statistical analysis of microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5-fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at d 56 postexposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at d 56 postexposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n = 256) and test set (n = 186). Furthermore, both gene signatures were associated with human lung cancer risk (n = 164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Exposición por Inhalación/efectos adversos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo , Nanotubos de Carbono/efectos adversos , Medición de Riesgo/métodos , Adulto , Anciano , Animales , Inteligencia Artificial , Biomarcadores de Tumor/genética , Estudios de Cohortes , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Nanotubos de Carbono/química , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Organismos Libres de Patógenos Específicos
18.
W V Med J ; 108(1): 23-6, 28-30, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-25134189

RESUMEN

Excess weight is a known risk factor for coronary artery disease (CAD) and a large percentage of overweight and obese individuals ultimately develop CAD. The objective of this study was to identify human genes associated with CAD in a subgroup of overweight and obese individuals using population-based association methods. Logistic regression analyses were used to test the association between single nucleotide polymorphisms (SNPs) in 34 candidate genes and the CAD phenotype with age, gender, and BMI as covariates. Two SNPs in the Apolipoprotein B (Apo B) gene [rs1042031 and rs1800479], one in the Cholesterol Ester Transfer Protein (CETP) gene [rs5880], and one in the Low Density Lipoprotein Receptor (LDLR) gene [rs2569538] met the 0.01 significance level for association with CAD. Based on these findings, we conclude that variants within the CETP and Apo B genes conferred susceptibility to CAD in overweight individuals and that a variant with the LDLR gene conferred susceptibility in an obese group.


Asunto(s)
Apolipoproteínas B/genética , Enfermedades Cardiovasculares/genética , Proteínas de Transferencia de Ésteres de Colesterol/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple , Receptores de LDL/genética , Índice de Masa Corporal , Enfermedades Cardiovasculares/diagnóstico , Predisposición Genética a la Enfermedad , Humanos , Sobrepeso/genética , Fenotipo , Valor Predictivo de las Pruebas , Factores de Riesgo , Sensibilidad y Especificidad , West Virginia
19.
Front Vet Sci ; 9: 848027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35518641

RESUMEN

We applied whole blood transcriptome analysis and gene set enrichment analysis to identify pathways associated with divergent selection for low or high RFI in beef cattle. A group of 56 crossbred beef steers (average BW = 261 ± 18.5 kg) were adapted to a high-forage total mixed ration in a confinement dry lot equipped with GrowSafe intake nodes for period of 49 d to determine their residual feed intake (RFI). After RFI determination, whole blood samples were collected from beef steers with the lowest RFI (most efficient; low-RFI; n = 8) and highest RFI (least efficient; high-RFI; n = 8). Prior to RNA extraction, whole blood samples collected were composited for each steer. Sequencing was performed on an Illumina NextSeq2000 equipped with a P3 flow. Gene set enrichment analysis (GSEA) was used to analyze differentially expressed gene sets and pathways between the two groups of steers. Results of GSEA revealed pathways associated with metabolism of proteins, cellular responses to external stimuli, stress, and heat stress were differentially inhibited (false discovery rate (FDR) < 0.05) in high-RFI compared to low-RFI beef cattle, while pathways associated with binding and uptake of ligands by scavenger receptors, scavenging of heme from plasma, and erythrocytes release/take up oxygen were differentially enriched (FDR < 0.05) in high-RFI, relative to low-RFI beef cattle. Taken together, our results revealed that beef steers divergently selected for low or high RFI revealed differential expressions of genes related to protein metabolism and stress responsiveness.

20.
Physiol Rep ; 10(22): e15509, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36426716

RESUMEN

Methamphetamine is a commonly abused illicit stimulant that has prevalent use among women of child-bearing age. While there are extensive studies on the neurological effects of prenatal methamphetamine exposure, relatively little is known about the effect of prenatal methamphetamine on the adult cardiovascular system. Earlier work demonstrated that prenatal methamphetamine exposure sex dependently (females only) sensitizes the adult heart to ischemic injury. These data suggest that prenatal exposure to methamphetamine may induce sex-dependent changes in cardiac gene expression that persist in adult offspring. The goal of this study was to test the hypothesis that prenatal methamphetamine exposure induces changes in cardiac gene expression that persist in the adult heart. Hearts of prenatally exposed female offspring exhibited a greater number of changes in gene expression compared to male offspring (184 changes compared with 74 in male offspring and 89 changes common between both sexes). Dimethylarginine dimethylaminohydrolase 2 and 3-hydroxybutyrate dehydrogenase 1 (genes implicated in heart failure) were shown by Western Blot to be under expressed in adult females that were prenatally exposed to methamphetamine, while males were deficient in 3-Hydroxybutyrate Dehydrogenase 1 only. These data indicate that prenatal methamphetamine exposure induces changes in gene expression that persist into adulthood. This is consistent with previous findings that prenatal methamphetamine sex dependently sensitizes the adult heart to ischemic injury and may increase the risk of developing cardiac disorders during adulthood.


Asunto(s)
Hijos Adultos , Cardiopatías , Hidroxibutirato Deshidrogenasa , Metanfetamina , Efectos Tardíos de la Exposición Prenatal , Adulto , Niño , Femenino , Humanos , Masculino , Embarazo , Expresión Génica , Hidroxibutirato Deshidrogenasa/deficiencia , Metanfetamina/efectos adversos , Miocardio , Factores Sexuales , Efectos Tardíos de la Exposición Prenatal/genética , Cardiopatías/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA