Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 80(5): 796-809.e9, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33156996

RESUMEN

The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética , Ubiquitina Tiolesterasa/genética
2.
Nat Chem Biol ; 18(7): 751-761, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35637349

RESUMEN

The selenoprotein glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid peroxides into nontoxic lipid alcohols. GPX4 has emerged as a promising therapeutic target for cancer treatment, but some cancer cells are resistant to ferroptosis triggered by GPX4 inhibition. Using a chemical-genetic screen, we identify LRP8 (also known as ApoER2) as a ferroptosis resistance factor that is upregulated in cancer. Loss of LRP8 decreases cellular selenium levels and the expression of a subset of selenoproteins. Counter to the canonical hierarchical selenoprotein regulatory program, GPX4 levels are strongly reduced due to impaired translation. Mechanistically, low selenium levels result in ribosome stalling at the inefficiently decoded GPX4 selenocysteine UGA codon, leading to ribosome collisions, early translation termination and proteasomal clearance of the N-terminal GPX4 fragment. These findings reveal rewiring of the selenoprotein hierarchy in cancer cells and identify ribosome stalling and collisions during GPX4 translation as ferroptosis vulnerabilities in cancer.


Asunto(s)
Ferroptosis , Selenio , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ribosomas/metabolismo , Selenio/metabolismo , Selenio/farmacología , Selenoproteínas/genética
3.
J Biol Chem ; 294(15): 6113-6129, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30737286

RESUMEN

Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin-conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.


Asunto(s)
Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Sustitución de Aminoácidos , Catálisis , Dominio Catalítico , Humanos , Mutación Missense , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Anal Chem ; 89(8): 4428-4434, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28291339

RESUMEN

Ubiquitin (Ub) has a broad functional range that has been ascribed to the formation of an array of polymeric ubiquitin chains. Understanding the precise roles of ubiquitin chains, however, is difficult due to their complex chain topologies. Branched ubiquitin chains are particularly challenging, as multiple modifications on a single ubiquitin preclude the use of standard bottom-up proteomic approaches. Developing methods to overcome these challenges is crucial considering evidence suggesting branched chains regulate the stability of proteins. In this study, we employ Ubiquitin Chain Enrichment Middle-down Mass Spectrometry (UbiChEM-MS) to identify branched chains that cannot be detected using bottom-up proteomic methods. Specifically, we employ tandem ubiquitin binding entities (TUBEs) and the K29-selective Npl4 Zinc Finger 1 (NZF1) domain from the deubiquitinase TRABID to enrich for chains from human cells. Minimal trypsinolysis followed by high resolution mass spectrometric analysis reveals that Ub chain branching can indeed be detected using both Ub binding domains (UBDs) tested at endogenous levels. We find that ∼1% of chains isolated with TUBEs contain Ub branch points, with this value rising to ∼4% after proteasome inhibition. Electron-transfer dissociation (ETD) analysis indicates the presence of K48 in these branched chains. The use of the NZF1 domain reveals that ∼4% of the isolated chains contain branch points with no apparent dependence on proteasome inhibition. Our results demonstrate an effective strategy for detecting and characterizing the dynamics of branched conjugates under different cellular conditions.


Asunto(s)
Endopeptidasas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Ubiquitina/química , Línea Celular , Cromatografía Líquida de Alta Presión , Endopeptidasas/química , Humanos , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación , Dedos de Zinc
5.
Chembiochem ; 17(16): 1525-31, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27256865

RESUMEN

Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Subunidades de Proteína/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Biocatálisis , Humanos , Conformación Molecular , Subunidades de Proteína/química , Especificidad por Sustrato
6.
Chemistry ; 21(4): 1673-81, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25418503

RESUMEN

Electronic circular dichroism and circularly polarized luminescence acid/base switching activity has been demonstrated in helicene-bipyridine proligand 1 a and in its "rollover" cycloplatinated derivative 2 a. Whereas proligand 1 a displays a strong bathochromic shift (>160 nm) of the nonpolarized and circularly polarized luminescence upon protonation, complex 2 a displays slightly stronger emission. This strikingly different behavior between singlet emission in the organic helicene and triplet emission in the organometallic derivative has been rationalized by using quantum-chemical calculations. The very large bathochromic shift of the emission observed upon protonation of azahelicene-bipyridine 1 a has been attributed to the decrease in aromaticity (promoting a charge-transfer-type transition rather than a π-π* transition) as well as an increase in the HOMO-LUMO character of the transition and stabilization of the LUMO level upon protonation.


Asunto(s)
Compuestos Organoplatinos/química , Compuestos Policíclicos/química , 2,2'-Dipiridil/química , Ácidos/química , Dicroismo Circular , Electrones , Concentración de Iones de Hidrógeno , Luminiscencia , Mediciones Luminiscentes , Modelos Moleculares
7.
Mol Biol Cell ; 35(2): ar15, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019608

RESUMEN

Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small-molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase and demonstrated that CFTR-F508del ERAD is robust. Gene-drug interaction experiments illustrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Fibrosis Quística/tratamiento farmacológico , Mutación , Ligasas/genética , Ligasas/metabolismo , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Pliegue de Proteína , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895340

RESUMEN

Imbalances in lipid storage and secretion lead to the accumulation of hepatocyte lipid droplets (LDs) (i.e., hepatic steatosis). Our understanding of the mechanisms that govern the channeling of hepatocyte neutral lipids towards cytosolic LDs or secreted lipoproteins remains incomplete. Here, we performed a series of CRISPR-Cas9 screens under different metabolic states to uncover mechanisms of hepatic neutral lipid flux. Clustering of chemical-genetic interactions identified CLIC-like chloride channel 1 (CLCC1) as a critical regulator of neutral lipid storage and secretion. Loss of CLCC1 resulted in the buildup of large LDs in hepatoma cells and knockout in mice caused liver steatosis. Remarkably, the LDs are in the lumen of the ER and exhibit properties of lipoproteins, indicating a profound shift in neutral lipid flux. Finally, remote homology searches identified a domain in CLCC1 that is homologous to yeast Brl1p and Brr6p, factors that promote the fusion of the inner and outer nuclear envelopes during nuclear pore complex assembly. Loss of CLCC1 lead to extensive nuclear membrane herniations, consistent with impaired nuclear pore complex assembly. Thus, we identify CLCC1 as the human Brl1p/Brr6p homolog and propose that CLCC1-mediated membrane remodeling promotes hepatic neutral lipid flux and nuclear pore complex assembly.

9.
BMC Plant Biol ; 13: 181, 2013 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-24237613

RESUMEN

BACKGROUND: Sucrose transporters (SUTs) play important roles in regulating the translocation of assimilates from source to sink tissues. Identification and characterization of new SUTs in economically important crops such as wheat provide insights into their role in determining seed yield. To date, however, only one SUT of wheat has been reported and functionally characterized. The present study reports the isolation and characterization of a new SUT, designated as TaSUT2, and its homeologues (TaSUT2A, TaSUT2B and TaSUT2D) in hexaploid wheat (Triticum aestivum L.). RESULTS: TaSUT2A and TaSUT2B genes each encode a protein with 506 amino acids, whereas TaSUT2D encodes a protein of 508 amino acids. The molecular mass of these proteins is predicted to be ~ 54 kDA. Topological analysis of the amino acid sequences of the three homeologues revealed that they contain 12 transmembrane spanning helices, which are described as distinct characteristic features of glycoside-pentoside-hexuronide cation symporter family that includes all known plant SUTs, and a histidine residue that appears to be localized at and associated conformationally with the sucrose binding site. Yeast SUSY7/ura3 strain cells transformed with TaSUT2A, TaSUT2B and TaSUT2D were able to uptake sucrose and grow on a medium containing sucrose as a sole source of carbon; however, our subcellular localization study with plant cells revealed that TaSUT2 is localized to the tonoplast. The expression of TaSUT2 was detected in the source, including flag leaf blade, flag leaf sheath, peduncle, glumes, palea and lemma, and sink (seed) tissues. The relative contributions of the three genomes of wheat to the total expression of TaSUT2 appear to differ with tissues and developmental stages. At the cellular level, TaSUT2 is expressed mainly in the vein of developing seeds and subepidermal mesophyll cells of the leaf blade. CONCLUSION: This study demonstrated that TaSUT2 is a new wheat SUT protein. Given that TaSUT2 is localized to the tonoplast and sucrose is temporarily stored in the vacuoles of both source and sink tissues, our data imply that TaSUT2 is involved in the intracellular partitioning of sucrose, particularly between the vacuole and cytoplasm.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Poliploidía , Homología de Secuencia de Aminoácido , Triticum/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas de las Plantas/genética , Clonación Molecular , Diploidia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Fracciones Subcelulares/metabolismo , Triticum/genética
10.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745470

RESUMEN

Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase, demonstrating that CFTR-F508del ERAD is highly buffered. Gene-drug interaction experiments demonstrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.

11.
Cell Chem Biol ; 30(9): 1090-1103.e7, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37178691

RESUMEN

Ferroptosis is a regulated form of cell death associated with the iron-dependent accumulation of phospholipid hydroperoxides. Inducing ferroptosis is a promising approach to treat therapy-resistant cancer. Ferroptosis suppressor protein 1 (FSP1) promotes ferroptosis resistance in cancer by generating the antioxidant form of coenzyme Q10 (CoQ). Despite the important role of FSP1, few molecular tools exist that target the CoQ-FSP1 pathway. Through a series of chemical screens, we identify several structurally diverse FSP1 inhibitors. The most potent of these compounds, ferroptosis sensitizer 1 (FSEN1), is an uncompetitive inhibitor that acts selectively through on-target inhibition of FSP1 to sensitize cancer cells to ferroptosis. Furthermore, a synthetic lethality screen reveals that FSEN1 synergizes with endoperoxide-containing ferroptosis inducers, including dihydroartemisinin, to trigger ferroptosis. These results provide new tools that catalyze the exploration of FSP1 as a therapeutic target and highlight the value of combinatorial therapeutic regimes targeting FSP1 and additional ferroptosis defense pathways.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Antioxidantes/metabolismo , Peroxidación de Lípido , Neoplasias/tratamiento farmacológico , Muerte Celular
12.
Dev Cell ; 58(18): 1782-1800.e10, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37494933

RESUMEN

Despite the key roles of perilipin-2 (PLIN2) in governing lipid droplet (LD) metabolism, the mechanisms that regulate PLIN2 levels remain incompletely understood. Here, we leverage a set of genome-edited human PLIN2 reporter cell lines in a series of CRISPR-Cas9 loss-of-function screens, identifying genetic modifiers that influence PLIN2 expression and post-translational stability under different metabolic conditions and in different cell types. These regulators include canonical genes that control lipid metabolism as well as genes involved in ubiquitination, transcription, and mitochondrial function. We further demonstrate a role for the E3 ligase MARCH6 in regulating triacylglycerol biosynthesis, thereby influencing LD abundance and PLIN2 stability. Finally, our CRISPR screens and several published screens provide the foundation for CRISPRlipid (http://crisprlipid.org), an online data commons for lipid-related functional genomics data. Our study identifies mechanisms of PLIN2 and LD regulation and provides an extensive resource for the exploration of LD biology and lipid metabolism.


Asunto(s)
Sistemas CRISPR-Cas , Gotas Lipídicas , Humanos , Perilipina-2/genética , Perilipina-2/metabolismo , Gotas Lipídicas/metabolismo , Sistemas CRISPR-Cas/genética , Metabolismo de los Lípidos/genética , Línea Celular
14.
Biol Open ; 11(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36409314

RESUMEN

The bioactive sphingolipid ceramide impacts diverse cellular processes (e.g. apoptosis and cell proliferation) through its effects on membrane dynamics and intracellular signaling pathways. The dysregulation of ceramide metabolism has been implicated in cancer evasion of apoptosis and targeting ceramide metabolism has potential therapeutic benefits as a strategy to kill cancer cells and slow tumor growth. However, the mechanisms of cancer cell resistance to ceramide-mediated cell death are vastly intertwined and incompletely understood. To shed light on this mystery, we performed a genome-wide CRISPR-Cas9 screen to systematically identify regulators of cancer resistance to the soluble short chain ceramide, C6 ceramide (C6-Cer). Our results reveal a complex landscape of genetic modifiers of C6-Cer toxicity, including genes associated with ceramide and sphingolipid metabolism, vesicular trafficking, and membrane biology. Furthermore, we find that loss of the phospholipid flippase subunit TMEM30A impairs the plasma membrane trafficking of its binding partner, the P4-type ATPase ATP11B, and depletion of TMEM30A or ATP11B disrupts plasma membrane asymmetry and promotes resistance to C6-Cer toxicity. Together, our findings provide a resource of genetic modifiers of C6-Cer toxicity and reveal an unexpected role of plasma membrane asymmetry in C6-Cer induced cell death.


Asunto(s)
Ceramidas , Esfingolípidos , Ceramidas/metabolismo , Ceramidas/farmacología , Membrana Celular/metabolismo , Transducción de Señal
15.
Elife ; 112022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35451368

RESUMEN

Degradation by the 26 S proteasome is an intricately regulated process fine tuned by the precise nature of ubiquitin modifications attached to a protein substrate. By debranching ubiquitin chains composed of K48 linkages, the proteasome-associated ubiquitin C-terminal hydrolase UCHL5/UCH37 serves as a positive regulator of protein degradation. How UCH37 achieves specificity for K48 chains is unclear. Here, we use a combination of hydrogen-deuterium mass spectrometry, chemical crosslinking, small-angle X-ray scattering, nuclear magnetic resonance (NMR), molecular docking, and targeted mutagenesis to uncover a cryptic K48 ubiquitin (Ub) chain-specific binding site on the opposite face of UCH37 relative to the canonical S1 (cS1) ubiquitin-binding site. Biochemical assays demonstrate the K48 chain-specific binding site is required for chain debranching and proteasome-mediated degradation of proteins modified with branched chains. Using quantitative proteomics, translation shutoff experiments, and linkage-specific affinity tools, we then identify specific proteins whose degradation depends on the debranching activity of UCH37. Our findings suggest that UCH37 and potentially other DUBs could use more than one S1 site to perform different biochemical functions.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Sitios de Unión , Simulación del Acoplamiento Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
16.
Curr Opin Chem Biol ; 63: 95-104, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33813043

RESUMEN

The diversity of ubiquitin modifications is immense. A protein can be monoubiquitylated, multi-monoubiquitylated, and polyubiquitylated with chains varying in size and shape. Ubiquitin itself can be adorned with other ubiquitin-like proteins and smaller functional groups. Considering different combinations of post-translational modifications can give rise to distinct biological outcomes, characterizing ubiquitylated proteoforms of a given protein is paramount. In this Opinion, we review recent advances in detecting and quantifying various ubiquitin proteoforms using mass spectrometry.


Asunto(s)
Proteoma/química , Ubiquitina/química , Sitios de Unión , Humanos , Lisina/química , Espectrometría de Masas , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteómica , Especificidad por Sustrato , Ubiquitinación
17.
STAR Protoc ; 2(2): 100579, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34151299

RESUMEN

Lipid droplets are endoplasmic reticulum-derived neutral lipid storage organelles that play critical roles in cellular lipid and energy homeostasis. Here, we present a protocol for the identification of high-confidence lipid droplet proteomes in a cell culture model. This approach overcomes limitations associated with standard biochemical fractionation techniques, employing an engineered ascorbate peroxidase (APEX2) to biotinylate endogenous lipid droplet proteins in living cells for subsequent purification and identification by proteomics. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2018).


Asunto(s)
Gotas Lipídicas/metabolismo , Proteoma , Ascorbato Peroxidasas/metabolismo , Biotina/metabolismo , Células Cultivadas , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Enzimas Multifuncionales/metabolismo
18.
J Am Soc Mass Spectrom ; 31(5): 1132-1139, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297515

RESUMEN

Misregulation of the E3 ubiquitin ligase Parkin and the kinase PINK1 underlie both inherited and idiopathic Parkinson's disease-associated neurodegeneration. Parkin and PINK1 work together to catalyze the assembly of ubiquitin chains on substrates located on the outer mitochondrial membrane to facilitate autophagic removal of damaged mitochondria through a process termed mitophagy. Quantitative measurements of Parkin-mediated chain assembly, both in vitro and on mitochondria, have revealed that chains are composed of Lys6, Lys11, Lys48, and Lys63 linkages. The combinatorial nature of these chains is further expanded by the ability of PINK1 to phosphorylate individual subunits. The precise architecture of chains produced by the coordinated action of PINK1 and Parkin, however, are unknown. Here, we demonstrate that quantitative middle-down mass spectrometry using uniformly 15N-labeled ubiquitin variants as internal standards informs on the extent of chain branching. We find that Parkin is a prolific branching enzyme in vitro. Quantitative middle-down mass spectrometry also reveals that phospho-Ser65-ubiquitin (pSer65-Ub)-a key activator of Parkin-is not incorporated into chains to a significant extent. Our results suggest that Parkin-mediated chain branching is "on-pathway", and branch points are the principal targets of the deubiquitinase USP30.


Asunto(s)
Espectrometría de Masas/métodos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Humanos , Lisina/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson , Proteínas Quinasas/metabolismo , Tioléster Hidrolasas/metabolismo
19.
Chempluschem ; 84(12): 1796-1804, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31943861

RESUMEN

This study investigates the significantly different luminescent and chiroptical properties of tetracycline (TC) when coordinated to Eu(III). The approach involves understanding the 1) speciation of TC and 2) conformation and species formed between Eu(III) and TC in a ratio of 1 : 1 in a dimethylformamide (DMF) solution and as a function of the pH value. By identifying the conformational changes of the various 1 : 1 Eu(III) : TC species, the results from this study explain information on the local microenvironment about the Eu(III) metal center. In particular, 5 D0 ←7 F0 Eu(III) laser excitation spectroscopy was employed to distinguish the different types of species found in solution in order to understand the interaction between Eu(III) and TC. On the other hand, circularly polarized luminescence (CPL) spectroscopy was used to understand the structural changes within the 1 : 1 Eu(III) : TC complex that could be related to the chirality of the Eu(III)-containing species. The CPL spectrum serves as a "fingerprint" to indicate the conformational changes within the 1 : 1 Eu(III) : TC complex as a result of the chiroptical signal arising from the various Eu(III) : TC species.


Asunto(s)
Europio/química , Luminiscencia , Tetraciclina/química , Dicroismo Circular/métodos , Europio/metabolismo , Mediciones Luminiscentes/métodos , Conformación Molecular , Rotación Óptica , Soluciones , Estereoisomerismo , Tetraciclina/metabolismo
20.
Front Physiol ; 10: 835, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333493

RESUMEN

Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA