Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(4): 2561-2577, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633084

RESUMEN

To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.

2.
ACS Appl Mater Interfaces ; 15(15): 18639-18652, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37022100

RESUMEN

The application of engineered biomaterials for wound healing has been pursued since the beginning of tissue engineering. Here, we attempt to apply functionalized lignin to confer antioxidation to the extracellular microenvironments of wounds and to deliver oxygen from the dissociation of calcium peroxide for enhanced vascularization and healing responses without eliciting inflammatory responses. Elemental analysis showed 17 times higher quantity of calcium in the oxygen-releasing nanoparticles. Lignin composites including the oxygen-generating nanoparticles released around 700 ppm oxygen per day at least for 7 days. By modulating the concentration of the methacrylated gelatin, we were able to maintain the injectability of lignin composite precursors and the stiffness of lignin composites suitable for wound healing after photo-cross-linking. In situ formation of lignin composites with the oxygen-releasing nanoparticles enhanced the rate of tissue granulation, the formation of blood vessels, and the infiltration of α-smooth muscle actin+ fibroblasts into the wounds over 7 days. At 28 days after surgery, the lignin composite with oxygen-generating nanoparticles remodeled the collagen architecture, resembling the basket-weave pattern of unwounded collagen with minimal scar formation. Thus, our study shows the potential of functionalized lignin for wound-healing applications requiring balanced antioxidation and controlled release of oxygen for enhanced tissue granulation, vascularization, and maturation of collagen.


Asunto(s)
Antioxidantes , Lignina , Antioxidantes/farmacología , Lignina/farmacología , Oxígeno , Cicatrización de Heridas , Colágeno
3.
Life Sci Space Res (Amst) ; 19: 24-30, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30482278

RESUMEN

Although space radiation is a known risk for space travel and eventual colonization of Moon or Mars, relatively few data exist on radiation effects on potential crop plants. We studied Brassica rapa to assess the tolerance of seeds and seedlings to radiation by exposing dry and hydrated B. rapa seeds to 1, 2 and 3 MeV proton ions of various fluences and examined the effect on germination and root growth. Modeling penetration depth with SRIM code indicated that the applied energy was insufficient to penetrate the seeds; therefore, all energy was deposited into the tissue. Subsequent germination varied based on the incident ion energy and fluence (dose). Dry and hydrated seeds germinate after ion fluence (1013 ions cm-2) irradiation, but the germination percentage decreased with increasing fluence for ions that could penetrate the seed coat (> 1 MeV). Despite their greater volume and mass, hydrated seeds were more sensitive to irradiation than dry seeds. Damage of the seed coat after irradiation led to faster germination and initial seedling growth. Our results suggest that the seed coat represents a valuable natural radiation protection and that low energy protons, the prevailing solar radiation, are suitable for studying radiation effects in seeds and plants.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Germinación , Estado de Hidratación del Organismo , Protones , Semillas/crecimiento & desarrollo , Brassica rapa/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Semillas/química , Semillas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA