Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(20): E4065-E4074, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28461507

RESUMEN

In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in Celegans TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Hormona Liberadora de Tirotropina/metabolismo , Secuencia de Aminoácidos , Animales , Tamaño Corporal , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Dieta , Evolución Molecular , Motilidad Gastrointestinal , Interferencia de ARN , Receptores de Hormona Liberadora de Tirotropina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Mol Cell Proteomics ; 16(9): 1621-1633, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28679685

RESUMEN

Protein turnover rates severely decline in aging organisms, including C. elegans However, limited information is available on turnover dynamics at the individual protein level during aging. We followed changes in protein turnover at one-day resolution using a multiple-pulse 15N-labeling and accurate mass spectrometry approach. Forty percent of the proteome shows gradual slowdown in turnover with age, whereas only few proteins show increased turnover. Decrease in protein turnover was consistent for only a minority of functionally related protein subsets, including tubulins and vitellogenins, whereas randomly diverging turnover patterns with age were the norm. Our data suggests increased heterogeneity of protein turnover of the translation machinery, whereas protein turnover of ubiquitin-proteasome and antioxidant systems are well-preserved over time. Hence, we presume that maintenance of quality control mechanisms is a protective strategy in aging worms, although the ultimate proteome collapse is inescapable.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animales , Metabolismo Energético , Semivida , Músculos/metabolismo , Faringe/metabolismo , Proteostasis , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 111(24): E2501-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24889636

RESUMEN

The antiglycemic drug metformin, widely prescribed as first-line treatment of type II diabetes mellitus, has lifespan-extending properties. Precisely how this is achieved remains unclear. Via a quantitative proteomics approach using the model organism Caenorhabditis elegans, we gained molecular understanding of the physiological changes elicited by metformin exposure, including changes in branched-chain amino acid catabolism and cuticle maintenance. We show that metformin extends lifespan through the process of mitohormesis and propose a signaling cascade in which metformin-induced production of reactive oxygen species increases overall life expectancy. We further address an important issue in aging research, wherein so far, the key molecular link that translates the reactive oxygen species signal into a prolongevity cue remained elusive. We show that this beneficial signal of the mitohormetic pathway is propagated by the peroxiredoxin PRDX-2. Because of its evolutionary conservation, peroxiredoxin signaling might underlie a general principle of prolongevity signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/efectos de los fármacos , Hormesis/efectos de los fármacos , Hipoglucemiantes/farmacología , Longevidad/efectos de los fármacos , Metformina/farmacología , Peroxirredoxinas/fisiología , Acil-CoA Deshidrogenasa/metabolismo , Aminoácidos de Cadena Ramificada/química , Animales , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Calor , Peróxido de Hidrógeno/química , Mitocondrias/enzimología , Modelos Animales , Estrés Oxidativo , Consumo de Oxígeno , Desplegamiento Proteico , Proteómica , Especies Reactivas de Oxígeno , Rotenona/química , Transducción de Señal , Factores de Tiempo
4.
J Exp Biol ; 218(Pt 1): 88-99, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25568455

RESUMEN

Insects are one of the most successful classes on Earth, reflected in an enormous species richness and diversity. Arguably, this success is partly due to the high degree to which polyphenism, where one genotype gives rise to more than one phenotype, is exploited by many of its species. In social insects, for instance, larval diet influences the development into distinct castes; and locust polyphenism has tricked researchers for years into believing that the drastically different solitarious and gregarious phases might be different species. Solitarious locusts behave much as common grasshoppers. However, they are notorious for forming vast, devastating swarms upon crowding. These gregarious animals are shorter lived, less fecund and transmit their phase characteristics to their offspring. The behavioural gregarisation occurs within hours, yet the full display of gregarious characters takes several generations, as does the reversal to the solitarious phase. Hormones, neuropeptides and neurotransmitters influence some of the phase traits; however, none of the suggested mechanisms can account for all the observed differences, notably imprinting effects on longevity and fecundity. This is why, more recently, epigenetics has caught the interest of the polyphenism field. Accumulating evidence points towards a role for epigenetic regulation in locust phase polyphenism. This is corroborated in the economically important locust species Locusta migratoria and Schistocerca gregaria. Here, we review the key elements involved in phase transition in locusts and possible epigenetic regulation. We discuss the relative role of DNA methylation, histone modification and small RNA molecules, and suggest future research directions.


Asunto(s)
Epigénesis Genética , Saltamontes/crecimiento & desarrollo , Saltamontes/genética , Estadios del Ciclo de Vida/genética , Animales , Conducta Animal , Genómica , Modelos Biológicos
5.
Mol Cell Proteomics ; 12(12): 3624-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002365

RESUMEN

Reduced signaling through the C. elegans insulin/insulin-like growth factor-1-like tyrosine kinase receptor daf-2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LC-MS/MS quantitative proteomics, we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction, as well as in the daf-2(e1370) insulin/insulin-like growth factor-1-receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that post-transcriptional regulation determines ribosome content. Proteomics also revealed the increased presence of many structural muscle cell components in long-lived worms, which appeared to result from the prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF-16, but not diet restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf-2-specific proteome changes include overexpression of aerobic metabolism enzymes and general activation of stress-responsive and immune defense systems, whereas the increased abundance of many protein subunits of the proteasome core complex is a dietary-restriction-specific characteristic.


Asunto(s)
Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Cromatografía Liquida , Metabolismo Energético/genética , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Longevidad/genética , Proteínas Musculares/genética , Mutación , Biosíntesis de Proteínas , Proteómica/métodos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Proteome Res ; 13(4): 1938-56, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24555535

RESUMEN

The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC-MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid ß-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/genética , Proteoma/genética , Receptor de Insulina/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Técnicas de Silenciamiento del Gen , Redes y Vías Metabólicas/genética , Mutación/genética , Proteoma/análisis , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Factores de Transcripción/análisis , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Adv Exp Med Biol ; 694: 81-107, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20886759

RESUMEN

Lifespan of the versatile model system Caenorhabditis elegans can be extended by a decrease of insulin/IGF-1 signaling, TOR signaling, mitochondrial function, protein synthesis and dietary intake. The exact molecular mechanisms by which these modulations confer increased life expectancy are yet to be determined but increased stress resistance and improved protein homeostasis seem to be of major importance. In this chapter, we explore the interactions among several genetic pathways and cellular functions involved in lifespan extension and their relation to protein homeostasis in C. elegans. Several of these processes have been associated, however some relevant data are conflicting and further studies are needed to clarify these interactions. In mammals, protein homeostasis is also implicated in several neurodegenerative diseases, many of which can be modeled in C. elegans.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Proteínas/metabolismo , Animales , Transducción de Señal
8.
J Gerontol A Biol Sci Med Sci ; 71(12): 1553-1559, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26865495

RESUMEN

In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidad/genética , Estabilidad Proteica , Aminoácidos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Glutatión/metabolismo , Mutación/genética , Fenotipo , Trehalosa/metabolismo
9.
Cell Rep ; 16(11): 3028-3040, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27626670

RESUMEN

Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. However, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditiselegans) and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. This slowdown was most prominent for translation-related and mitochondrial proteins. In contrast, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Semivida , Membranas Intracelulares/metabolismo , Marcaje Isotópico , Lisosomas/metabolismo , Mitocondrias/metabolismo , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas , Proteómica , Reproducibilidad de los Resultados , Estrés Fisiológico , Fracciones Subcelulares/metabolismo
10.
Free Radic Biol Med ; 52(5): 850-9, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22226831

RESUMEN

Reactive oxygen species (ROS) are no longer considered merely toxic by-products of the oxidative metabolism. Tightly controlled concentrations of ROS and fluctuations in redox potential may be important mediators of signaling processes. Understanding the role of ROS and redox status in physiology, stress response, development, and aging requires their nondisruptive, spatiotemporal, real-time quantification in a living organism. We established Caenorhabditis elegans strains bearing the genetically encoded fluorescent biosensors HyPer and Grx1-roGFP2 for the detection of hydrogen peroxide (H(2)O(2)) and the glutathione redox potential, respectively. Although, given its transparency and genetic tractability, C. elegans is perfectly suitable as a model organism for such approaches, they have never been tried before in this nematode. We found that H(2)O(2) treatment clearly induces a dose-dependent, reversible response of both biosensors in the living worms. The ratio of oxidized to reduced glutathione decreases during postembryonic development. H(2)O(2) levels increase with age and this effect is delayed when life span is extended by dietary restriction. In young adults, we detected several regions with distinct redox properties that may be linked to their biological function. Our findings demonstrate that genetically encoded biosensors can reveal previously unknown details of in vivo redox biology in multicellular organisms.


Asunto(s)
Caenorhabditis elegans/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Factores de Edad , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Caenorhabditis elegans/crecimiento & desarrollo , Regulación de la Expresión Génica , Genitales/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/metabolismo , Cabeza , Peróxido de Hidrógeno/metabolismo , Esperanza de Vida , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/metabolismo , Músculos/metabolismo , Especificidad de Órganos , Oxidantes/metabolismo , Oxidación-Reducción , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Cola (estructura animal)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA