Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Eye Res ; 138: 134-44, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26142956

RESUMEN

Amyloid-beta (Aß) is a group of aggregation-prone, 38- to 43-amino acid peptides generated in the eye and other organs. Numerous studies suggest that the excessive build-up of low-molecular-weight soluble oligomers of Aß plays a role in the progression of Alzheimer's disease and other brain degenerative diseases. Recent studies raise the hypothesis that excessive Aß levels may contribute also to certain retinal degenerative diseases. These findings, together with evidence that a major portion of Aß is released as monomer into the extracellular space, raise the possibility that a technology enabling the enzymatic break-down of monomeric Aß in the living eye under physiological conditions could prove useful for research on ocular Aß physiology and, perhaps ultimately, for therapeutic applications. Neprilysin (NEP), an endopeptidase known to cleave Aß monomer into inactive products, is a membrane-associated protein. However, sNEP, a recombinant form of the NEP catalytic domain, is soluble in aqueous medium. With the aim of determining the Aß-cleaving activity of exogenous sNEP in the microenvironment of the intact eye, we analyzed the effect of intra-vitreally delivered sNEP on ocular Aß levels in mice that exhibit readily measurable, aqueous buffer-extractable Aß40 and Aß42, two principal forms of Aß. Anesthetized 10-month wild-type (C57BL/6J) and 2-3-month 5XFAD transgenic mice received intra-vitreal injections of sNEP (0.004-10 µg) in one eye and were sacrificed at defined post-treatment times (30 min - 12 weeks). Eye tissues (combined lens, vitreous, retina, RPE and choroid) were homogenized in phosphate-buffered saline, and analyzed for Aß40 and Aß42 (ELISA) and for total protein (Bradford assay). The fellow, untreated eye of each mouse served as control, and concentrations of Aß (pmol/g protein) in the treated eye were normalized to that of the untreated control eye. In C57BL/6J mice, as measured at 2 h after sNEP treatment, increasing amounts of injected sNEP yielded progressively greater reductions of Aß40, ranging from 12% ± 3% (mean ± SEM; n = 3) with 4 ng sNEP to 85% ± 13% (n = 5) with 10 µg sNEP. At 4 ng sNEP the average Aß40 reduction reached >70% by 24 h following treatment and remained near this level for about 8 weeks. In 5XFAD mice, 10 µg sNEP produced an Aß40 decrease of 99% ± 1% (n = 4) and a substantial although smaller decrease in Aß42 (42% ± 36%; n = 4) within 24 h. Electroretinograms (ERGs) were recorded from eyes of C57BL/6J and 5XFAD mice at 9 days following treatment with 4 ng or 10 µg sNEP, conditions that on average led, respectively, to an 82% and 91% Aß40 reduction in C57BL/6J eyes, an 87% and 92% Aß40 reduction in 5XFAD eyes, and a 23% and 52% Aß42 reduction in 5XFAD eyes. In all cases, sNEP-treated eyes exhibited robust ERG responses, consistent with a general tolerance of the posterior eye tissues to the investigated conditions of sNEP treatment. The sNEP-mediated decrease of ocular Aß levels reported here represents a possible approach for determining effects of Aß reduction in normally functioning eyes and in models of retinal degenerative disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Coroides/metabolismo , Cristalino/metabolismo , Neprilisina/farmacología , Retina/metabolismo , Cuerpo Vítreo/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Humanos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Donantes de Tejidos
2.
Doc Ophthalmol ; 129(3): 151-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25266461

RESUMEN

PURPOSE: It has been known for several decades that the magnitude of the corneal electroretinogram (ERG) varies with position on the eye surface, especially in the presence of focal or asymmetric stimuli or retinal lesions. However, this phenomenon has not been well-characterized using simultaneous measurements at multiple locations on the cornea. This work provides the first characterization of spatial differences in the ERG across the rat cornea. METHODS: A contact lens electrode array was employed to record ERG potentials at 25 corneal locations simultaneously following brief full-field flash stimuli in normally sighted Long-Evans rats. These multi-electrode electroretinogram (meERG) responses were analyzed for spatial differences in a-wave and b-wave amplitudes and implicit times. RESULTS: Spatially distinct ERG potentials could be recorded reliably. Comparing relative amplitudes across the corneal locations suggested a slight non-uniform distribution when using full-field, near-saturating stimuli. Amplitudes of a- and b-waves were approximately 3 % lower in the inferior quadrant than in the superior quadrant of the cornea. CONCLUSIONS: The present results comprise the start of the first normative meERG database for rat eyes and provide a basis for comparison of results from eyes with functional deficit. Robust measures of spatial differences in corneal potentials will also support optimization and validation of computational source models of the ERG. To fully utilize the information contained in the meERG data, a detailed understanding of the roles of the many determinants of local corneal potentials will eventually be required.


Asunto(s)
Córnea/fisiología , Electrodos , Electrorretinografía/métodos , Potenciales de la Membrana/fisiología , Animales , Lentes de Contacto , Masculino , Estimulación Luminosa , Ratas , Ratas Long-Evans
3.
J Neural Eng ; 18(5)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34433154

RESUMEN

Objective. The spatial distribution of activity at the retina determines the spatial distribution of electroretinogram potentials at the cornea. Here a three-dimensional surface spline method is evaluated for interpolating corneal potentials between measurement points in multi-electrode electroretinography (meERG) data sets.Approach. 25-channel meERG responses were obtained from rat eyes before and after treatment to create local lesions. A 3rd order surface spline was used to interpolate meERG values resulting in smooth color-coded maps of corneal potentials. Potential maps were normalized using standard score values. Pre- and post-treatment responses were characterized by spatial standard deviation and by difference-from-normal plots.Main results. The spatial standard deviation for eyes with local lesions were significantly higher than for healthy eyes. The 3rd order spline resulted in well-behaved corneal potential maps that maintained low error rate when up to 30% of recording channels were excluded from analysis. Post-normalization, responses could be combined within experimental groups, and individual eyes with lesions were clearly distinguished from the healthy-eye mean response. A 3rd order surface spline is an acceptable means of interpolating meERG potentials to create corneal potential maps. The spatial standard deviation is more sensitive to local dysfunction than absolute amplitudes.Significance. This work demonstrates solutions to key challenges in the recording and analysis of meERG responses: visualization, normalization, channel loss, and identification of abnormal responses. Continued development of the meERG technique is relevant to research and clinical applications, especially where local dysfunction (early progressive disease) or local therapeutic effect (subretinal injection) is of interest.


Asunto(s)
Córnea , Electrorretinografía , Animales , Electrodos , Ratas , Retina
4.
IEEE Trans Biomed Eng ; 65(12): 2781-2789, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29993425

RESUMEN

OBJECTIVE: The information derived from the electroretinogram (ERG), especially with regard to local areas of retinal dysfunction or therapeutic rescue, can be enhanced by an increased understanding of the relationship between local retinal current sources and local ERG potentials measured at the cornea. A critical step in this direction is the development of a robust bioelectric field model of the ERG. METHODS: A finite-element model was created to simulate ERG potentials at the cornea resulting from physiologically relevant transretinal currents. A magnetic resonance image of a rat eye was segmented to define all major ocular structures, tissues were assigned conductivity values from the literature. The model was optimized to multi-electrode ERG (meERG) data recorded in healthy rat eyes, and validated with meERG data from eyes with experimental lesions in peripheral retina. RESULTS: Following optimization, the simulated distribution of corneal potentials was in good agreement with measured values; residual error was comparable to the average difference of individual eyes from the measured mean. The model predicted the corneal potential distribution for eight eyes with experimental lesions with similar accuracy, and a measure of pre- to post-lesion changes in corneal potential distribution was well correlated with the location of the lesion. CONCLUSION: An eye model with high anatomical accuracy was successfully validated against a robust dataset. SIGNIFICANCE: This model can now be used for optimization of ERG electrode design, and to support functional mapping of the retina from meERG data via solving the inverse bioelectric source problem.


Asunto(s)
Electrorretinografía/métodos , Imagenología Tridimensional/métodos , Retina/diagnóstico por imagen , Animales , Electrodos , Electrorretinografía/instrumentación , Análisis de Elementos Finitos , Ratas , Procesamiento de Señales Asistido por Computador
5.
Transl Vis Sci Technol ; 7(1): 8, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29367893

RESUMEN

PURPOSE: The pattern electroretinogram (pERG) response reflects, in part, ganglion cell function. However, probing retinal ganglion cell (RGC) function in the mid- and far peripheral retina is difficult with conventional flat-panel pERG stimulus sources. A pattern stimulus source is presented for probing the peripheral retina. Peripheral pERG (ppERG) responses were evaluated versus luminance, reversal rate, and field subtended, and were compared with conventional pERG in healthy eyes. METHODS: Eleven normally-sighted subjects were recruited. A hemispherical surface was used to present a reversing checkerboard pattern to the peripheral retina, from approximately 35° to 85° of visual field, in all directions. Responses to stimuli presented to peripheral field sectors (superior, nasal, inferior, temporal) were also recorded. Conventional pERG responses were recorded on the same day. Amplitudes and implicit times of waveform peaks were evaluated. RESULTS: Robust pERG responses from peripheral retina resemble conventional pERG responses but with shorter implicit times and reduced positive component. Responses to high-luminance patterns include high-frequency components resembling flash ERG oscillatory potentials. Negative response component amplitudes increased with increasing pattern luminance, and decreased with increasing reversal rate. CONCLUSIONS: Peripheral-field pERG responses are robust and repeatable; the unique response properties reflect differences between central and peripheral retina. Field-sector response ratios can be used to probe for sectoral dysfunction associated with disease. TRANSLATIONAL RELEVANCE: The ppERG approach provides direct measurement of proximal retinal function beyond the fields probed by conventional perimetry and pERG, providing access to a relatively under studied part of the retina relevant to early stage glaucoma.

6.
Invest Ophthalmol Vis Sci ; 58(7): 2863-2873, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28586910

RESUMEN

Purpose: Conventional full-field flash electroretinography (ERG) yields a single response waveform that can be useful in the early detection and diagnosis of many diseases affecting the retina. It is an objective measurement that probes the entire retina. However, localized areas of dysfunction have relatively small influence on ERG amplitudes compared to normal ranges. Here we evaluate the use of corneal potential maps obtained in response to full-field flash stimuli for sensitivity to local areas of retinal damage. Methods: A contact lens electrode array was used to record 25 ERG waveforms simultaneously following saturating full-field flash stimuli (multi-electrode electroretinography, meERG) in rats. Waveforms were evaluated for a-wave and b-wave amplitudes; these values were normalized and further evaluated for spatial differences across the corneal surface. Cluster analysis and a support vector machine approach were used to classify meERG responses from healthy eyes and eyes with central (photocoagulation) or peripheral (cryocoagulation) experimental lesions. Results: A normative normalized corneal potential map was obtained from healthy eyes (n = 26). Corneal potential maps from eyes with experimental lesions (n = 13) could be classified with sensitivity and specificity of approximately 80% based solely on the normalized spatial distribution of corneal potentials, that is, with no knowledge of absolute amplitudes. Conclusions: Corneal potential maps obtained in response to full-field flash stimuli are altered in eyes with scotomas in the central and far-peripheral retina. The meERG approach yields useful spatial information following a single brief flash, analogous to body-surface potential maps used to evaluate heart and brain.


Asunto(s)
Córnea/fisiopatología , Adaptación a la Oscuridad/inmunología , Electrodos , Electrorretinografía/métodos , Retina/fisiopatología , Escotoma/diagnóstico , Animales , Masculino , Estimulación Luminosa , Curva ROC , Ratas , Ratas Long-Evans , Retina/patología , Escotoma/fisiopatología , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA