Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863251

RESUMEN

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Asunto(s)
Epigenómica , Enfermedades del Sistema Inmune/genética , Monocitos/metabolismo , Neutrófilos/metabolismo , Linfocitos T/metabolismo , Transcripción Genética , Adulto , Anciano , Empalme Alternativo , Femenino , Predisposición Genética a la Enfermedad , Células Madre Hematopoyéticas/metabolismo , Código de Histonas , Humanos , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Adulto Joven
2.
Cell ; 162(5): 1039-50, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26300124

RESUMEN

Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain.


Asunto(s)
Cromatina/química , Regulación de la Expresión Génica , Variación Genética , Genoma Humano , Cromatina/metabolismo , Cromosomas Humanos/química , Genética de Población , Humanos , Sitios de Carácter Cuantitativo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
3.
Nature ; 577(7789): 179-189, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915397

RESUMEN

A primary goal of human genetics is to identify DNA sequence variants that influence biomedical traits, particularly those related to the onset and progression of human disease. Over the past 25 years, progress in realizing this objective has been transformed by advances in technology, foundational genomic resources and analytical tools, and by access to vast amounts of genotype and phenotype data. Genetic discoveries have substantially improved our understanding of the mechanisms responsible for many rare and common diseases and driven development of novel preventative and therapeutic strategies. Medical innovation will increasingly focus on delivering care tailored to individual patterns of genetic predisposition.


Asunto(s)
Variación Genética , Animales , Pruebas Genéticas , Genómica , Genotipo , Humanos , Fenotipo , Enfermedades Raras/genética
4.
Am J Hum Genet ; 109(3): 387-389, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245473

RESUMEN

This article is based on the address given by the author at the 2021 virtual meeting of the American Society of Human Genetics (ASHG). The video of the original address can be found at the ASHG website.


Asunto(s)
Distinciones y Premios , Genética Médica , Humanos , Estados Unidos
5.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35387486

RESUMEN

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Estudios Transversales , Estudio de Asociación del Genoma Completo , Humanos , Receptores de Coronavirus , SARS-CoV-2
6.
BMC Genomics ; 24(1): 442, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543566

RESUMEN

BACKGROUND: Expression quantitative trait loci (eQTL) studies provide insights into regulatory mechanisms underlying disease risk. Expanding studies of gene regulation to underexplored populations and to medically relevant tissues offers potential to reveal yet unknown regulatory variants and to better understand disease mechanisms. Here, we performed eQTL mapping in subcutaneous (S) and visceral (V) adipose tissue from 106 Greek individuals (Greek Metabolic study, GM) and compared our findings to those from the Genotype-Tissue Expression (GTEx) resource. RESULTS: We identified 1,930 and 1,515 eGenes in S and V respectively, over 13% of which are not observed in GTEx adipose tissue, and that do not arise due to different ancestry. We report additional context-specific regulatory effects in genes of clinical interest (e.g. oncogene ST7) and in genes regulating responses to environmental stimuli (e.g. MIR21, SNX33). We suggest that a fraction of the reported differences across populations is due to environmental effects on gene expression, driving context-specific eQTLs, and suggest that environmental effects can determine the penetrance of disease variants thus shaping disease risk. We report that over half of GM eQTLs colocalize with GWAS SNPs and of these colocalizations 41% are not detected in GTEx. We also highlight the clinical relevance of S adipose tissue by revealing that inflammatory processes are upregulated in individuals with obesity, not only in V, but also in S tissue. CONCLUSIONS: By focusing on an understudied population, our results provide further candidate genes for investigation regarding their role in adipose tissue biology and their contribution to disease risk and pathogenesis.


Asunto(s)
Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo , Humanos , Grecia , Regulación de la Expresión Génica , Genotipo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos
7.
Clin Proteomics ; 20(1): 31, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550624

RESUMEN

BACKGROUND: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. METHODS: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. RESULTS: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). CONCLUSION: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.

8.
Mol Psychiatry ; 27(12): 5177-5185, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36114277

RESUMEN

Schizophrenia is a polygenic psychiatric disorder with limited understanding about the mechanistic changes in gene expression regulation. To elucidate on this, we integrate interindividual variability of regulatory activity (ChIP-sequencing for H3K27ac histone mark) with gene expression and genotype data captured from the prefrontal cortex of 272 cases and controls. By measuring interindividual correlation among proximal chromatin peaks, we show that regulatory element activity is structured into 10,936 and 10,376 cis-regulatory domains in cases and controls, respectively. The schizophrenia-specific cis-regulatory domains are enriched for fetal-specific (p = 0.0014, OR = 1.52) and depleted of adult-specific regulatory activity (p = 3.04 × 10-50, OR = 0.57) and are enriched for SCZ heritability (p = 0.001). By studying the interplay among genetic variants, gene expression, and cis-regulatory domains, we ascertain that changes in coordinated regulatory activity tag alterations in gene expression levels (p = 3.43 × 10-5, OR = 1.65), unveil case-specific QTL effects, and identify regulatory machinery changes for genes affecting synaptic function and dendritic spine morphology in schizophrenia. Altogether, we show that accounting for coordinated regulatory activity provides a novel mechanistic approach to reduce the search space for unveiling genetically perturbed regulation of gene expression in schizophrenia.


Asunto(s)
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Regulación de la Expresión Génica , Corteza Prefrontal/metabolismo , Cromatina/metabolismo , Herencia Multifactorial , Predisposición Genética a la Enfermedad
9.
Mol Psychiatry ; 27(10): 4191-4200, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35768638

RESUMEN

While the recurrent 22q11.2 deletion is one of the strongest genetic risk factors for schizophrenia (SCZ), variability of its associated neuropsychiatric endophenotypes reflects its incomplete penetrance for psychosis development. To assess whether this phenotypic variability is linked to common variants associated with SCZ, we studied the association between SCZ polygenic risk score (PRS) and longitudinally acquired phenotypic information of the Swiss 22q11.2DS cohort (n = 97, 50% females, mean age 17.7 yr, mean visit interval 3.8 yr). The SCZ PRS with the best predictive performance was ascertained in the Estonian Biobank (n = 201,146) with LDpred. The infinitesimal SCZ PRS model showed the strongest capacity in discriminating SCZ cases from controls with one SD difference in SCZ PRS corresponding to an odds ratio (OR) of 1.73 (95% CI 1.57-1.90, P = 1.47 × 10-29). In 22q11.2 patients, random-effects ordinal regression modelling using longitudinal data showed SCZ PRS to have the strongest effect on social anhedonia (OR = 2.09, P = 0.0002), and occupational functioning (OR = 1.82, P = 0.0003) within the negative symptoms course, and dysphoric mood (OR = 2.00, P = 0.002) and stress intolerance (OR = 1.76, P = 0.0002) within the general symptoms course. Genetic liability for SCZ was additionally associated with full scale cognitive decline (ß = -0.25, P = 0.02) and with longitudinal volumetric reduction of the right and left hippocampi (ß = -0.28, P = 0.005; ß = -0.23, P = 0.02, respectively). Our results indicate that the polygenic contribution to SCZ acts upon the threshold-lowering first hit (i.e., the deletion). It modifies the endophenotypes of 22q11.2DS and augments the derailment of developmental trajectories of negative and general symptoms, cognition, and hippocampal volume.


Asunto(s)
Disfunción Cognitiva , Síndrome de DiGeorge , Trastornos Psicóticos , Esquizofrenia , Femenino , Humanos , Adolescente , Masculino , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Herencia Multifactorial/genética , Trastornos Psicóticos/genética , Disfunción Cognitiva/genética
10.
FASEB J ; 35(4): e21452, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749946

RESUMEN

Despite the importance of germ cell (GC) differentiation for sexual reproduction, the gene networks underlying their fate remain unclear. Here, we comprehensively characterize the gene expression dynamics during sex determination based on single-cell RNA sequencing of 14 914 XX and XY mouse GCs between embryonic days (E) 9.0 and 16.5. We found that XX and XY GCs diverge transcriptionally as early as E11.5 with upregulation of genes downstream of the bone morphogenic protein (BMP) and nodal/Activin pathways in XY and XX GCs, respectively. We also identified a sex-specific upregulation of genes associated with negative regulation of mRNA processing and an increase in intron retention consistent with a reduction in mRNA splicing in XY testicular GCs by E13.5. Using computational gene regulation network inference analysis, we identified sex-specific, sequential waves of putative key regulator genes during GC differentiation and revealed that the meiotic genes are regulated by positive and negative master modules acting in an antagonistic fashion. Finally, we found that rare adrenal GCs enter meiosis similarly to ovarian GCs but display altered expression of master genes controlling the female and male genetic programs, indicating that the somatic environment is important for GC function. Our data are available on a web platform and provide a molecular roadmap of GC sex determination at single-cell resolution, which will serve as a valuable resource for future studies of gonad development, function, and disease.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Procesos de Determinación del Sexo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas , Masculino , Ratones , Ratones Transgénicos , Análisis de la Célula Individual , Factores de Tiempo , Cromosoma X , Cromosoma Y
11.
PLoS Genet ; 15(4): e1008091, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31009447

RESUMEN

The HLA (Human Leukocyte Antigens) genes are well-documented targets of balancing selection, and variation at these loci is associated with many disease phenotypes. Variation in expression levels also influences disease susceptibility and resistance, but little information exists about the regulation and population-level patterns of expression. This results from the difficulty in mapping short reads originated from these highly polymorphic loci, and in accounting for the existence of several paralogues. We developed a computational pipeline to accurately estimate expression for HLA genes based on RNA-seq, improving both locus-level and allele-level estimates. First, reads are aligned to all known HLA sequences in order to infer HLA genotypes, then quantification of expression is carried out using a personalized index. We use simulations to show that expression estimates obtained in this way are not biased due to divergence from the reference genome. We applied our pipeline to the GEUVADIS dataset, and compared the quantifications to those obtained with reference transcriptome. Although the personalized pipeline recovers more reads, we found that using the reference transcriptome produces estimates similar to the personalized pipeline (r ≥ 0.87) with the exception of HLA-DQA1. We describe the impact of the HLA-personalized approach on downstream analyses for nine classical HLA loci (HLA-A, HLA-C, HLA-B, HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). Although the influence of the HLA-personalized approach is modest for eQTL mapping, the p-values and the causality of the eQTLs obtained are better than when the reference transcriptome is used. We investigate how the eQTLs we identified explain variation in expression among lineages of HLA alleles. Finally, we discuss possible causes underlying differences between expression estimates obtained using RNA-seq, antibody-based approaches and qPCR.


Asunto(s)
Mapeo Cromosómico , Expresión Génica , Antígenos HLA/genética , Sitios de Carácter Cuantitativo , Alelos , Biología Computacional/métodos , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Transcriptoma
13.
Hum Genet ; 140(3): 381-400, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32728807

RESUMEN

Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.


Asunto(s)
Predisposición Genética a la Enfermedad , Factores de Transcripción Paired Box/genética , Empalme Alternativo , Animales , Mapeo Cromosómico , Evolución Molecular , Humanos , Filogenia , ARN Mensajero/genética , Transcripción Genética
14.
Diabetologia ; 63(4): 744-756, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32002573

RESUMEN

AIMS/HYPOTHESIS: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). METHODS: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. RESULTS: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. CONCLUSIONS/INTERPRETATION: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Homeostasis/fisiología , Anciano , Glucemia/metabolismo , Estudios de Cohortes , Estudios Transversales , Dinamarca/epidemiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Femenino , Finlandia/epidemiología , Prueba de Tolerancia a la Glucosa , Control Glucémico , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Suecia/epidemiología
15.
Hum Mol Genet ; 27(4): 732-741, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29228364

RESUMEN

Changes in the mean and variance of gene expression with age have consequences for healthy aging and disease development. Age-dependent changes in phenotypic variance have been associated with a decline in regulatory functions leading to increase in disease risk. Here, we investigate age-related mean and variance changes in gene expression measured by RNA-seq of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) expression from 855 adult female twins. We see evidence of up to 60% of age effects on transcription levels shared across tissues, and 47% of those on splicing. Using gene expression variance and discordance between genetically identical MZ twin pairs, we identify 137 genes with age-related changes in variance and 42 genes with age-related discordance between co-twins; implying the latter are driven by environmental effects. We identify four eQTLs whose effect on expression is age-dependent (FDR 5%). Combined, these results show a complicated mix of environmental and genetically driven changes in expression with age. Using the twin structure in our data, we show that additive genetic effects explain considerably more of the variance in gene expression than aging, but less that other environmental factors, potentially explaining why reliable expression-derived biomarkers for healthy-aging have proved elusive compared with those derived from methylation.


Asunto(s)
Expresión Génica/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Línea Celular , Estudios de Cohortes , Exones/genética , Femenino , Humanos , Persona de Mediana Edad , Empalme del ARN/genética , Gemelos Monocigóticos/genética
16.
Genome Res ; 27(4): 545-552, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28302734

RESUMEN

Gene expression is dependent on genetic and environmental factors. In the last decade, a large body of research has significantly improved our understanding of the genetic architecture of gene expression. However, it remains unclear whether genetic effects on gene expression remain stable over time. Here, we show, using longitudinal whole-blood gene expression data from a twin cohort, that the genetic architecture of a subset of genes is unstable over time. In addition, we identified 2213 genes differentially expressed across time points that we linked with aging within and across studies. Interestingly, we discovered that most differentially expressed genes were affected by a subset of 77 putative causal genes. Finally, we observed that putative causal genes and down-regulated genes were affected by a loss of genetic control between time points. Taken together, our data suggest that instability in the genetic architecture of a subset of genes could lead to widespread effects on the transcriptome with an aging signature.


Asunto(s)
Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Anciano , Femenino , Humanos , Persona de Mediana Edad , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética
17.
Nature ; 512(7512): 87-90, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25079323

RESUMEN

The cis-regulatory effects responsible for cancer development have not been as extensively studied as the perturbations of the protein coding genome in tumorigenesis. To better characterize colorectal cancer (CRC) development we conducted an RNA-sequencing experiment of 103 matched tumour and normal colon mucosa samples from Danish CRC patients, 90 of which were germline-genotyped. By investigating allele-specific expression (ASE) we show that the germline genotypes remain important determinants of allelic gene expression in tumours. Using the changes in ASE in matched pairs of samples we discover 71 genes with excess of somatic cis-regulatory effects in CRC, suggesting a cancer driver role. We correlate genotypes and gene expression to identify expression quantitative trait loci (eQTLs) and find 1,693 and 948 eQTLs in normal samples and tumours, respectively. We estimate that 36% of the tumour eQTLs are exclusive to CRC and show that this specificity is partially driven by increased expression of specific transcription factors and changes in methylation patterns. We show that tumour-specific eQTLs are more enriched for low CRC genome-wide association study (GWAS) P values than shared eQTLs, which suggests that some of the GWAS variants are tumour specific regulatory variants. Importantly, tumour-specific eQTL genes also accumulate more somatic mutations when compared to the shared eQTL genes, raising the possibility that they constitute germline-derived cancer regulatory drivers. Collectively the integration of genome and the transcriptome reveals a substantial number of putative somatic and germline cis-regulatory cancer changes that may have a role in tumorigenesis.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alelos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/patología , Metilación de ADN , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Estudio de Asociación del Genoma Completo , Genotipo , Mutación de Línea Germinal/genética , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Transcriptoma/genética
18.
Diabetologia ; 62(8): 1453-1462, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31134308

RESUMEN

AIMS/HYPOTHESIS: The circadian system plays an essential role in regulating the timing of human metabolism. Indeed, circadian misalignment is strongly associated with high rates of metabolic disorders. The properties of the circadian oscillator can be measured in cells cultured in vitro and these cellular rhythms are highly informative of the physiological circadian rhythm in vivo. We aimed to discover whether molecular properties of the circadian oscillator are altered as a result of type 2 diabetes. METHODS: We assessed molecular clock properties in dermal fibroblasts established from skin biopsies taken from nine obese and eight non-obese individuals with type 2 diabetes and 11 non-diabetic control individuals. Following in vitro synchronisation, primary fibroblast cultures were subjected to continuous assessment of circadian bioluminescence profiles based on lentiviral luciferase reporters. RESULTS: We observed a significant inverse correlation (ρ = -0.592; p < 0.05) between HbA1c values and circadian period length within cells from the type 2 diabetes group. RNA sequencing analysis conducted on samples from this group revealed that ICAM1, encoding the endothelial adhesion protein, was differentially expressed in fibroblasts from individuals with poorly controlled vs well-controlled type 2 diabetes and its levels correlated with cellular period length. Consistent with this circadian link, the ICAM1 gene also displayed rhythmic binding of the circadian locomotor output cycles kaput (CLOCK) protein that correlated with gene expression. CONCLUSIONS/INTERPRETATION: We provide for the first time a potential molecular link between glycaemic control in individuals with type 2 diabetes and circadian clock machinery. This paves the way for further mechanistic understanding of circadian oscillator changes upon type 2 diabetes development in humans. DATA AVAILABILITY: RNA sequencing data and clinical phenotypic data have been deposited at the European Genome-phenome Archive (EGA), which is hosted by the European Bioinformatics Institute (EBI) and the Centre for Genomic Regulation (CRG), ega-box-1210, under accession no. EGAS00001003622.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano , Diabetes Mellitus Tipo 2/sangre , Hemoglobina Glucada/análisis , Adulto , Anciano , Biopsia , Glucemia/metabolismo , Proteínas CLOCK/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Lentivirus/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Análisis de Secuencia de ARN , Piel/metabolismo
19.
Diabetologia ; 62(9): 1601-1615, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31203377

RESUMEN

AIMS/HYPOTHESIS: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up). METHODS: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe. RESULTS: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean ± SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m2; fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m2; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l. CONCLUSIONS/INTERPRETATION: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.


Asunto(s)
Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Anciano , Glucemia/efectos de los fármacos , Estudios de Cohortes , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Estado Prediabético/sangre , Estado Prediabético/epidemiología , Estudios Prospectivos
20.
Hum Mol Genet ; 26(5): 1003-1017, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062664

RESUMEN

Studies attempting to functionally interpret complex-disease susceptibility loci by GWAS and eQTL integration have predominantly employed microarrays to quantify gene-expression. RNA-Seq has the potential to discover a more comprehensive set of eQTLs and illuminate the underlying molecular consequence. We examine the functional outcome of 39 variants associated with Systemic Lupus Erythematosus (SLE) through the integration of GWAS and eQTL data from the TwinsUK microarray and RNA-Seq cohort in lymphoblastoid cell lines. We use conditional analysis and a Bayesian colocalisation method to provide evidence of a shared causal-variant, then compare the ability of each quantification type to detect disease relevant eQTLs and eGenes. We discovered the greatest frequency of candidate-causal eQTLs using exon-level RNA-Seq, and identified novel SLE susceptibility genes (e.g. NADSYN1 and TCF7) that were concealed using microarrays, including four non-coding RNAs. Many of these eQTLs were found to influence the expression of several genes, supporting the notion that risk haplotypes may harbour multiple functional effects. Novel SLE associated splicing events were identified in the T-reg restricted transcription factor, IKZF2, and other candidate genes (e.g. WDFY4) through asQTL mapping using the Geuvadis cohort. We have significantly increased our understanding of the genetic control of gene-expression in SLE by maximising the leverage of RNA-Seq and performing integrative GWAS-eQTL analysis against gene, exon, and splice-junction quantifications. We conclude that to better understand the true functional consequence of regulatory variants, quantification by RNA-Seq should be performed at the exon-level as a minimum, and run in parallel with gene and splice-junction level quantification.


Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Sitios de Carácter Cuantitativo/genética , ARN no Traducido/genética , Empalme Alternativo/genética , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/biosíntesis , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Mapeo Cromosómico , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Lupus Eritematoso Sistémico/patología , Masculino , Polimorfismo de Nucleótido Simple , Factor 1 de Transcripción de Linfocitos T/biosíntesis , Factor 1 de Transcripción de Linfocitos T/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA