Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Inorg Chem ; 63(11): 4802-4806, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38428038

RESUMEN

Three new ligands based on the alloxazine core appended with pyridyl coordinating groups have been designed, synthesized, and characterized. The ligands are revealed to be redox-active in DMF solution, as attested to by CV and combined CV/EPR studies. The spin of the reduced species appears to be delocalized on the alloxazine core, as attested to by DFT calculations. The coordination abilities of one of the ligands toward Cu2+ or Ni2+ 3d cations revealed the formation of the first alloxazine-based 3D coordination polymers, presenting strong π-π stacking and substantial cavities. Preliminarily charge/discharge experiments in Li batteries evidence Li+ insertion in such systems.

2.
Angew Chem Int Ed Engl ; 63(25): e202403417, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627209

RESUMEN

Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine-tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post-functionalization. We show that the introduction of a remote metal-binding redox site on alloxazine and flavin activates their aromatic ring towards direct C-H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground-state single electron transfer (SET) with an electrophilic source followed by radical-radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post-functionalization and the utility of the method is demonstrated with the site-selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification.

3.
Chemistry ; 29(46): e202301610, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265455

RESUMEN

N-Heterocyclic carbenes (NHCs) have drawn considerable interest in the field of nanomaterials chemistry as highly stabilizing ligands enabling the formation of strong and covalent carbon-metal bonds. Applied to gold nanoparticles synthesis, the most common strategy consists of the reduction of a preformed NHC-AuI complex with a large excess of a reducing agent that makes the particle size difficult to control. In this paper, we report the straightforward synthesis of NHC-coated gold nanoparticles (NHC-AuNPs) by treating a commercially available gold(I) precursor with an easy-to-synthesize NHC-BH3 reagent. The latter acts as both the reducing agent and the source of surface ligands operating under mild conditions. Mechanistic studies including NMR spectroscopy and mass spectrometry demonstrate that the reduction of gold(I) generates NHC-BH2 Cl as a by-product. This strategy gives efficient control over the nucleation and growth of gold particles by varying the NHC-borane/gold(I) ratio, allowing unparalleled particle size variation over the range of 4.9±0.9 to 10.0±2.7 nm. Our strategy also allows an unprecedented precise and controlled seeded growth of gold nanoparticles. In addition, the as-prepared NHC-AuNPs exhibit narrow size distributions without the need for extensive purification or size-selectivity techniques, and are stable over months.

4.
Inorg Chem ; 62(8): 3321-3332, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36780646

RESUMEN

Potential inversion refers to the situation where a protein cofactor or a synthetic molecule can be oxidized or reduced twice in a cooperative manner; that is, the second electron transfer is easier than the first. This property is very important regarding the catalytic mechanism of enzymes that bifurcate electrons and the properties of bidirectional redox molecular catalysts that function in either direction of the reaction with no overpotential. Cyclic voltammetry is the most common technique for characterizing the thermodynamics and kinetics of electron transfer to or from these molecules. However, a gap in the literature is the absence of analytical predictions to help interpret the values of the voltammetric peak potentials when potential inversion occurs; the cyclic voltammograms are therefore often analyzed by simulating the data, with no discussion of the possibility of overfitting and often no estimation of the error on the determined parameters. Here we formulate the theory for the voltammetry of freely diffusing or surface-confined two-electron redox species in the experimentally relevant irreversible limit where the peak separation depends on the scan rate. We explain why the model is intrinsically underdetermined, and we illustrate this conclusion by analysis of the voltammetry of a nickel complex with redox-active iminosemiquinone ligands. Being able to characterize the thermodynamics of two-electron electron-transfer reactions will be crucial for designing more efficient catalysts.

5.
Chemistry ; 28(35): e202200596, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35545956

RESUMEN

Mechanisms combining organic radicals and metallic intermediates hold strong potential in homogeneous catalysis. Such activation modes require careful optimization of two interconnected processes: one for the generation of radicals and one for their productive integration towards the final product. We report that a bioinspired polymetallic nickel complex can combine ligand- and metal-centered reactivities to perform fast hydrosilylation of alkenes under mild conditions through an unusual dual radical- and metal-based mechanism. This earth-abundant polymetallic complex incorporating a catechol-alloxazine motif as redox-active ligand operates at low catalyst loading (0.25 mol%) and generates silyl radicals and a nickel-hydride intermediate through a hydrogen atom transfer (HAT) step. Evidence of an isomerization sequence enabling terminal hydrosilylation of internal alkenes points towards the involvement of the nickel-hydride species in chain walking. This single catalyst promotes a hybrid pathway by combining synergistically ligand and metal participation in both inner- and outer- sphere processes.


Asunto(s)
Alquenos , Níquel , Catálisis , Catecoles , Flavinas , Ligandos , Metales
6.
Chem Soc Rev ; 49(23): 8840-8867, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33107878

RESUMEN

Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.


Asunto(s)
Complejos de Coordinación/metabolismo , Enzimas/metabolismo , Biocatálisis , Complejos de Coordinación/química , Enzimas/química , Ligandos , Estructura Molecular , Oxidación-Reducción
7.
Beilstein J Org Chem ; 16: 858-870, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32461767

RESUMEN

Copper catalysis finds applications in various synthetic fields by utilizing the ability of copper to sustain mono- and bielectronic elementary steps. Further to the development of well-defined copper complexes with classical ligands such as phosphines and N-heterocyclic carbenes, a new and fast-expanding area of research is exploring the possibility of a complementing metal-centered reactivity with electronic participation by the coordination sphere. To achieve this electronic flexibility, redox-active ligands can be used to engage in a fruitful "electronic dialogue" with the metal center, and provide additional venues for electron transfer. This review aims to present the latest results in the area of copper-based cooperative catalysis with redox-active ligands.

8.
Chemistry ; 24(20): 5086-5090, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29356131

RESUMEN

Small-molecule catalysts as mimics of biological systems illustrate the chemists' attempts at emulating the tantalizing abilities displayed by nature's metalloenzymes. Among these innate behaviors, spin multistate reactivity is used by biological systems as it offers thermodynamic leverage towards challenging chemical reactivity but this concept is difficult to translate into the realm of synthetic organometallic catalysis. Here, we report a rare example of molecular spin catalysis involving multistate reactivity in a small-molecule biomimetic copper catalyst applied to aziridination. This behavior is supported by spin state flexibility enabled by the redox-active ligand.

9.
Chemistry ; 23(60): 15030-15034, 2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-28873243

RESUMEN

Nickel complexes have gained sustained attention as efficient catalysts in cross-coupling reactions and co-catalysts in dual systems due to their ability to react with radical species. Central to this reactivity is nickel's propensity to shuttle through several accessible redox states from Ni0 to NiIV . Here, we report the catalytic generation of trifluoromethyl radicals from a nickel complex bearing redox-active iminosemiquinone ligands. This unprecedented reactivity is enabled through ligand-based oxidation performing electron transfer to an electrophilic CF3+ source while the nickel oxidation state is preserved. Additionally, extension of this reactivity to a copper complex bearing a single redox equivalent is reported, thus providing a unified reactivity scheme. These results open new pathways in radical chemistry with redox-active ligands.

10.
Angew Chem Int Ed Engl ; 55(36): 10712-6, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27504607

RESUMEN

The reactivity of a stable copper(II) complex bearing fully oxidized iminobenzoquinone redox ligands towards nucleophiles is described. In sharp contrast with its genuine low-valent counterpart bearing reduced ligands, this complex performs high-yielding C-N bond formations. Mechanistic studies suggest that this behavior could stem from a mechanism akin to reductive elimination occurring at the metal center but facilitated by the ligand: it is proposed that a masked high oxidation state of the metal can be stabilized as a lower copper(II) oxidation state by the redox ligands without forfeiting its ability to behave as a high-valent copper(III) center. These observations are substantiated by a combination of advanced EPR spectroscopy techniques with DFT studies. This work sheds light on the potential of redox ligands as promoters of unusual reactivities at metal centers and illustrates the concept of masked high-valent metallic species.

11.
Chemistry ; 20(16): 4754-61, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24634349

RESUMEN

Tandem C-H activation/arylation between unactivated arenes and aryl halides catalyzed by iron complexes that bear redox-active non-innocent bisiminopyridine ligands is reported. Similar reactions catalyzed by first-row transition metals have been shown to involve substrate-based aryl radicals, whereas our catalytic system likely involves ligand-centered radicals. Preliminary mechanistic investigations based on spectroscopic and reactivity studies, in conjunction with DFT calculations, led us to propose that the reaction could proceed through an inner-sphere C-H activation pathway, which is rarely observed in the case of iron complexes. This bielectronic noble-metal-like behavior could be sustained by the redox-active non-innocent bisiminopyridine ligands.

12.
Org Biomol Chem ; 9(17): 6066-74, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21748189

RESUMEN

Amino-substituted biphenyls were obtained by Suzuki cross-coupling of 2,6-dibromoaniline with a phenylboronic acid (substituted with Me, NO(2), OH, OMe or Cl) preferably assisted by microwave irradiation. Conversion of the amino group into a thiol preceded a base-induced intramolecular substitution, also facilitated by microwave heating, to generate the second C-S bond of the target dibenzothiophene. The 1-, 2-, 3- or 4-substituted 6-halodibenzothiophenes obtained were subjected to a palladium-mediated coupling with 2-morpholin-4-yl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4H-chromen-4-one to give the respective 6-, 7-, 8- or 9-substituted dibenzothiophen-4-ylchromenones. These compounds were evaluated as inhibitors of DNA-dependent protein kinase (DNA-PK) and compared to the parent 8-(dibenzo[b,d]thiophen-4-yl)-2-morpholin-4-yl-4H-chromen-4-one. Notably, derivatives bearing hydroxy or methoxy substituents at C-8 or C-9 retained activity, whereas substitution at C-7 lowered activity. Substitution with chloro at C-6 was not detrimental to activity, but a chloro group at C-7 or C-8 reduced potency. The data indicate permissive elaboration of hydroxyl at C-8 or C-9, enabling the possibility of improved pharmaceutical properties, whilst retaining potency against DNA-PK.


Asunto(s)
Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Tiofenos/síntesis química , Tiofenos/farmacología , Ciclización , Proteína Quinasa Activada por ADN/metabolismo , Inhibidores Enzimáticos/química , Humanos , Microondas , Tiofenos/química
13.
J Org Chem ; 75(20): 6983-5, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20839823

RESUMEN

A versatile new method for the preparation of NHC boranes starting from two stable, readily available reactants-an heterocyclic salt and an amine or phosphine-borane-is reported. It uses a Lewis base exchange at boron and provides easy access to new NHC boranes, in particular B-substituted borane ones.


Asunto(s)
Aminas/química , Boranos/química , Boranos/síntesis química , Compuestos Heterocíclicos/síntesis química , Metano/análogos & derivados , Fosfinas/química , Compuestos Heterocíclicos/química , Metano/síntesis química , Metano/química , Estructura Molecular , Estereoisomerismo
14.
iScience ; 23(3): 100955, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32199288

RESUMEN

Metalloenzymes use earth-abundant non-noble metals to perform high-fidelity transformations in the biological world. To ensure chemical efficiency, metalloenzymes have acquired evolutionary reactivity-enhancing tools. Among these, the entatic state model states that a strongly distorted geometry induced by ligands around a metal center gives rise to an energized structure called entatic state, strongly improving the reactivity. However, the original definition refers both to the transfer of electrons or chemical groups, whereas the chemical application of this concept in synthetic systems has mostly focused on electron transfer, therefore eluding chemical transformations. Here we report that a highly strained redox-active ligand enables a copper complex to perform catalytic nitrogen- and carbon-group transfer in as fast as 2 min, thus exhibiting a strong increase in reactivity compared with its unstrained analogue. This report combines two reactivity-enhancing features from metalloenzymes, entasis and redox cofactors, applied to group-transfer catalysis.

18.
Chem Sci ; 7(3): 2030-2036, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899928

RESUMEN

A well-defined copper complex bearing iminosemiquinone ligands performs single electron reduction of an electrophilic CF3+ source into CF˙3 radicals. This redox behavior is enabled by the ligand which shuttles through two different redox states (iminosemiquinone and iminobenzoquinone) while the copper center is preserved as a Cu(ii). This system was used in the trifluoromethylation of silyl enol ethers, heteroaromatics and in the hydrotrifluoromethylation of alkynes. This is the first example of cooperative redox catalysis for the controlled generation of CF˙3 radicals.

19.
Chem Commun (Camb) ; 50(72): 10394-7, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25065468

RESUMEN

The reaction of a copper complex bearing iminosemiquinone ligands with a CF3(+) source provides an unprecedented Cu(II)-CF3 complex through ligand-based oxidation. Reactivity of this complex leads to nucleophilic trifluoromethylation of the ligand, suggesting an electronic interplay that results in a formal umpolung of the initial CF3(+).


Asunto(s)
Benzoquinonas/química , Complejos de Coordinación/química , Cobre/química , Complejos de Coordinación/síntesis química , Técnicas Electroquímicas , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Espectroscopía de Resonancia Magnética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA