Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1493-1508.e20, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474370

RESUMEN

Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.


Asunto(s)
Enfermedad de Crohn/terapia , Citocinas/inmunología , Intestinos/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Humanos , Inmunoterapia/métodos , Fagocitos/patología , Análisis de la Célula Individual , Células del Estroma/patología , Linfocitos T/patología
2.
Proc Natl Acad Sci U S A ; 121(1): e2307086120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147543

RESUMEN

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Serina-Treonina Quinasas , Ratones , Humanos , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocinas , Inflamación/tratamiento farmacológico , Isoformas de Proteínas , Antiinflamatorios/farmacología , Inmunidad Innata , Factores de Transcripción
3.
Gut ; 72(7): 1271-1287, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36109152

RESUMEN

OBJECTIVE: IBD therapies and treatments are evolving to deeper levels of remission. Molecular measures of disease may augment current endpoints including the potential for less invasive assessments. DESIGN: Transcriptome analysis on 712 endoscopically defined inflamed (Inf) and 1778 non-inflamed (Non-Inf) intestinal biopsies (n=498 Crohn's disease, n=421 UC and 243 controls) in the Mount Sinai Crohn's and Colitis Registry were used to identify genes differentially expressed between Inf and Non-Inf biopsies and to generate a molecular inflammation score (bMIS) via gene set variance analysis. A circulating MIS (cirMIS) score, reflecting intestinal molecular inflammation, was generated using blood transcriptome data. bMIS/cirMIS was validated as indicators of intestinal inflammation in four independent IBD cohorts. RESULTS: bMIS/cirMIS was strongly associated with clinical, endoscopic and histological disease activity indices. Patients with the same histologic score of inflammation had variable bMIS scores, indicating that bMIS describes a deeper range of inflammation. In available clinical trial data sets, both scores were responsive to IBD treatment. Despite similar baseline endoscopic and histologic activity, UC patients with lower baseline bMIS levels were more likely treatment responders compared with those with higher levels. Finally, among patients with UC in endoscopic and histologic remission, those with lower bMIS levels were less likely to have a disease flare over time. CONCLUSION: Transcriptionally based scores provide an alternative objective and deeper quantification of intestinal inflammation, which could augment current clinical assessments used for disease monitoring and have potential for predicting therapeutic response and patients at higher risk of disease flares.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Humanos , Colitis Ulcerosa/patología , Inflamación/genética , Inflamación/patología , Enfermedad de Crohn/patología , Biopsia , Biomarcadores , Mucosa Intestinal/patología
4.
PLoS Pathog ; 14(10): e1007388, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365536

RESUMEN

The metabolic processes that enable the replication of intracellular Salmonella under nitrosative stress conditions engendered in the innate response of macrophages are poorly understood. A screen of Salmonella transposon mutants identified the ABC-type high-affinity zinc uptake system ZnuABC as a critical determinant of the adaptation of Salmonella to the nitrosative stress generated by the enzymatic activity of inducible nitric oxide (NO) synthase of mononuclear phagocytic cells. NO limits the virulence of a znuB mutant in an acute murine model of salmonellosis. The ZnuABC transporter is crucial for the glycolytic function of fructose bisphosphate aldolase, thereby fueling growth of Salmonella during nitrosative stress produced in the innate response of macrophages. Our investigations demonstrate that glycolysis mediates resistance of Salmonella to the antimicrobial activity of NO produced in an acute model of infection. The ATP synthesized by substrate-level phosphorylation at the payoff phase of glycolysis and acetate fermentation powers the replication of Salmonella experiencing high levels of nitrosative stress. In contrast, despite its high potential for ATP synthesis, oxidative phosphorylation is a major target of inhibition by NO and contributes little to the antinitrosative defenses of intracellular Salmonella. Our investigations have uncovered a previously unsuspected conjunction between zinc homeostasis, glucose metabolism and cellular energetics in the adaptation of intracellular Salmonella to the reactive nitrogen species synthesized in the innate host response.


Asunto(s)
Inmunidad Innata/inmunología , Macrófagos/inmunología , Óxido Nítrico/metabolismo , Infecciones por Salmonella/microbiología , Salmonella/crecimiento & desarrollo , Zinc/farmacología , Animales , Homeostasis , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Estrés Nitrosativo/efectos de los fármacos , Fosforilación , Salmonella/efectos de los fármacos , Salmonella/inmunología , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/inmunología
5.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247060

RESUMEN

Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot.IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots.


Asunto(s)
Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología , Salmonella typhimurium/fisiología , Solanum lycopersicum/microbiología , Expresión Génica/fisiología , Genes Bacterianos/fisiología , Salmonella typhimurium/genética
6.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039131

RESUMEN

Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism.IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being one of the common culprits. Recent studies also suggest that these human pathogens can use plants as alternate hosts as a part of their life cycle. While dual (animal/plant) lifestyles of other members of the Enterobacteriaceae family are well known, the strategies with which Salmonella colonizes plants are only partially understood. Therefore, we undertook a high-throughput characterization of the functions required for Salmonella persistence within tomatoes. The results of this study were compared with what is known about genes required for Salmonella virulence in animals and interactions of plant pathogens with their hosts to determine whether Salmonella repurposes its virulence repertoire inside plants or whether it behaves more as a phytopathogen during plant colonization. Even though Salmonella utilized some of its virulence-related genes in tomatoes, plant colonization required a distinct set of functions.


Asunto(s)
Elementos Transponibles de ADN/genética , Enfermedades de las Plantas/microbiología , Salmonella/genética , Salmonella/metabolismo , Solanum lycopersicum/microbiología , Aminoácidos/biosíntesis , Animales , Proliferación Celular/efectos de los fármacos , ADN Bacteriano , Modelos Animales de Enfermedad , Enterobacteriaceae , Enfermedades Transmitidas por los Alimentos/microbiología , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/fisiología , Humanos , Estadios del Ciclo de Vida , Lipopolisacáridos/farmacología , Solanum lycopersicum/genética , Ratones , Mutación , Nucleótidos/biosíntesis , Salmonella/patogenicidad , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/transmisión , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidad , Análisis de Secuencia , Virulencia/genética
7.
Indian J Med Res ; 146(2): 272-280, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29265030

RESUMEN

BACKGROUND & OBJECTIVES: A rapid and simple alternative method is needed to replace the laborious, time-consuming Salmonella serotyping. The objective of the present study was to improve and simplify a previously reported multiplex polymerase chain reaction (PCR)-based method and to create an online server to enable rapid determination of serovars. METHODS: A method of multiplex PCR-based genome typing (MPGT) was standardized using 59 Salmonella isolates of 31 serovars. Several previously reported primers were modified to obtain a more accurate performance. The screen was separated into four different multiplex reactions distinguishable on standard electrophoresis. A blind study was subsequently performed with 81 isolates of 10 serovars most prevalent in India. Whole genome information from 440 Salmonella isolates was used to confirm the usefulness of this method and concurrence of in silico predictions and PCR results were investigated. A public server (http://www.mpgt-salmonella.res.in) was established for data storage and determination of closest previously observed Salmonella isolates based on obtained MPGT patterns. RESULTS: The 16 target genes amplified showed variability in their presence in strains from different serotypes. Hence, identical amplification patterns suggested genetic relatedness of strains and usually identical serological behaviour. The observed absence/presence patterns of genes were converted to an MPGT code. Altogether, 83 different codes were predicted in silico based on the whole genome information of 440 strains. Results confirmed that major serovars usually displayed unique MPGT codes. INTERPRETATION & CONCLUSIONS: The multiplex PCR assay resulted in specific binary codes for isolates from each of the 31 Salmonella serovars tested. The online server allowed the user to compare obtained PCR results with stored previous patterns. Simplicity, speed and cost-effectiveness make this tool useful for quick outbreak management.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Salmonella/diagnóstico , Salmonella enterica/aislamiento & purificación , Humanos , India/epidemiología , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Serogrupo , Serotipificación
8.
Infect Immun ; 84(4): 1150-1165, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26857569

RESUMEN

Active invasion into nonphagocytic host cells is central to Salmonella enterica pathogenicity and dependent on multiple genes within Salmonella pathogenicity island 1 (SPI-1). Here, we explored the invasion phenotype and the expression of SPI-1 in the typhoidal serovarS Paratyphi A compared to that of the nontyphoidal serovarS Typhimurium. We demonstrate that while S. Typhimurium is equally invasive under both aerobic and microaerobic conditions, S. Paratyphi A invades only following growth under microaerobic conditions. Transcriptome sequencing (RNA-Seq), reverse transcription-PCR (RT-PCR), Western blot, and secretome analyses established that S. Paratyphi A expresses much lower levels of SPI-1 genes and secretes lesser amounts of SPI-1 effector proteins than S. Typhimurium, especially under aerobic growth. Bypassing the native SPI-1 regulation by inducible expression of the SPI-1 activator, HilA, considerably elevated SPI-1 gene expression, host cell invasion, disruption of epithelial integrity, and induction of proinflammatory cytokine secretion by S. Paratyphi A but not by S. Typhimurium, suggesting that SPI-1 expression is naturally downregulated inS Paratyphi A. Using streptomycin-treated mice, we were able to establish substantial intestinal colonization byS Paratyphi A and showed moderately higher pathology and intestinal inflammation in mice infected with S. Paratyphi A overexpressing hilA Collectively, our results reveal unexpected differences in SPI-1 expression between S. Paratyphi A andS Typhimurium, indicate that S. Paratyphi A host cell invasion is suppressed under aerobic conditions, and suggest that lower invasion in aerobic sites and suppressed expression of immunogenic SPI-1 components contributes to the restrained inflammatory infection elicited by S. Paratyphi A.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Salmonella paratyphi A/metabolismo , Salmonella typhimurium/metabolismo , Animales , Proteínas Bacterianas/genética , Clonación Molecular , Citocinas/genética , Citocinas/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Salmonella paratyphi A/genética , Salmonella typhimurium/genética , Transactivadores/genética , Transactivadores/metabolismo
9.
Clin Infect Dis ; 62(7): 879-886, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26740515

RESUMEN

BACKGROUND: Although chronic infections by typhoidal Salmonella are well-known, prolonged human infections by nontyphoidal Salmonella (NTS) are poorly characterized. METHODS: We retrospectively analyzed 48 345 culture-confirmed NTS infections that occurred in Israel 1995-2012. A case-control study was performed to identify risk factors associated with persistent infections. Whole-genome-sequencing, pulsed-field gel electrophoresis (PFGE), and a mouse infection model were used to study genetic and phenotypic differences between same-patient persistent, recurring isolates. RESULTS: In total, 1047 cases of persistent NTS infections, comprising 2.2% of all reported cases of salmonellosis, were identified. The persistence periods ranged between 30 days to 8.3 years. The majority (93%) of the persistently infected patients were immunocompetent, and 65% were symptomatic with relapsing diarrhea, indicating a distinct clinical manifestation from the asymptomatic carriage of typhoidal Salmonella. Four NTS serovars (Mbandaka, Bredeney, Infantis and Virchow) were found to be significantly more frequently associated with persistence than others. Comparative genomics between early and later isolates obtained from the same patients confirmed clonal infection and showed 0 to 10 SNPs between persistent isolates. A different composition of mobile genetic elements (plasmids and phages) or amino acid substitutions in global regulators was identified in multiple cases. These changes resulted in differences in phenotype and virulence between early and later same-patient isolates. CONCLUSIONS: These results illuminate the overlooked clinical manifestation of persistent salmonellosis that can serve as a human reservoir for NTS infections. Additionally, we demonstrate mechanisms of in-host microevolution and exhibit their potential to shape Salmonella pathogenicity, antimicrobial resistance and host-pathogen interactions.


Asunto(s)
Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Enfermedad Crónica , ADN Bacteriano , Modelos Animales de Enfermedad , Femenino , Genoma Bacteriano/genética , Humanos , Lactante , Israel/epidemiología , Masculino , Ratones , Estudios Retrospectivos , Análisis de Secuencia de ADN , Adulto Joven
10.
Bioinformatics ; 31(9): 1496-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25573919

RESUMEN

MOTIVATION: RNA-Seq is a method for profiling transcription using high-throughput sequencing and is an important component of many research projects that wish to study transcript isoforms, condition specific expression and transcriptional structure. The methods, tools and technologies used to perform RNA-Seq analysis continue to change, creating a bioinformatics challenge for researchers who wish to exploit these data. Resources that bring together genomic data, analysis tools, educational material and computational infrastructure can minimize the overhead required of life science researchers. RESULTS: RNA-Rocket is a free service that provides access to RNA-Seq and ChIP-Seq analysis tools for studying infectious diseases. The site makes available thousands of pre-indexed genomes, their annotations and the ability to stream results to the bioinformatics resources VectorBase, EuPathDB and PATRIC. The site also provides a combination of experimental data and metadata, examples of pre-computed analysis, step-by-step guides and a user interface designed to enable both novice and experienced users of RNA-Seq data. AVAILABILITY AND IMPLEMENTATION: RNA-Rocket is available at rnaseq.pathogenportal.org. Source code for this project can be found at github.com/cidvbi/PathogenPortal. CONTACT: anwarren@vt.edu SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Animales , Bacterias/genética , Vectores de Enfermedades , Genómica , Parásitos/genética
11.
Infect Immun ; 83(9): 3355-68, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26056383

RESUMEN

Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here, we explored the motility phenotype of S. Paratyphi A and the role of flagellin in key virulence-associated phenotypes. Motility studies established that the human-adapted typhoidal S. Typhi, S. Paratyphi A, and S. Sendai are all noticeably less motile than S. Typhimurium, and comparative transcriptome sequencing (RNA-Seq) showed that in S. Paratyphi A, the entire motility-chemotaxis regulon is expressed at significantly lowers levels than in S. Typhimurium. Nevertheless, S. Paratyphi A, like S. Typhimurium, requires a functional flagellum for epithelial cell invasion and macrophage uptake, probably in a motility-independent mechanism. In contrast, flagella were found to be dispensable for host cell adhesion. Moreover, we demonstrate that in S. Paratyphi A, but not in S. Typhimurium, the lack of flagellin results in increased transcription of the flagellar and the Salmonella pathogenicity island 1 (SPI-1) regulons in a FliZ-dependent manner and in oversecretion of SPI-1 effectors via type three secretion system 1. Collectively, these results suggest a novel regulatory linkage between flagellin and SPI-1 in S. Paratyphi A that does not occur in S. Typhimurium and demonstrate curious distinctions in motility and the expression of the flagellum-chemotaxis regulon between these clinically relevant pathogens.


Asunto(s)
Flagelina/metabolismo , Fiebre Paratifoidea/metabolismo , Salmonella paratyphi A/patogenicidad , Proteínas Bacterianas/biosíntesis , Western Blotting , Células CACO-2 , Humanos , Espectrometría de Masas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Emerg Infect Dis ; 20(9): 1481-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25147968

RESUMEN

Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th-18th centuries and diversified during the 1920s and 1950s.


Asunto(s)
Genoma Bacteriano , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enteritidis/clasificación , Salmonella enteritidis/genética , Brotes de Enfermedades , Evolución Molecular , Humanos , Modelos Estadísticos , Filogenia , Polimorfismo de Nucleótido Simple , Prevalencia , Serogrupo
13.
J Clin Microbiol ; 52(6): 2078-88, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24719441

RESUMEN

Salmonella enterica is the leading etiologic agent of bacterial food-borne outbreaks worldwide. This ubiquitous species contains more than 2,600 serovars that may differ in their host specificity, clinical manifestations, and epidemiology. To characterize salmonellosis epidemiology in Israel and to study the association of nontyphoidal Salmonella (NTS) serovars with invasive infections, 48,345 Salmonella cases reported and serotyped at the National Salmonella Reference Center between 1995 and 2012 were analyzed. A quasi-Poisson regression was used to identify irregular clusters of illness, and pulsed-field gel electrophoresis in conjunction with whole-genome sequencing was applied to molecularly characterize strains of interest. Three hundred twenty-nine human salmonellosis clusters were identified, representing an annual average of 23 (95% confidence interval [CI], 20 to 26) potential outbreaks. We show that the previously unsequenced S. enterica serovar 9,12:l,v:- belongs to the B clade of Salmonella enterica subspecies enterica, and we show its frequent association with extraintestinal infections, compared to other NTS serovars. Furthermore, we identified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in Israel, which are genetically distinct from other global DT104 isolates. Accumulatively, these findings indicate a severe underreporting of Salmonella outbreaks in Israel and provide insights into the epidemiology and genomics of prevalent serovars, responsible for recurring illness.


Asunto(s)
Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enterica/clasificación , Salmonella enterica/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , Electroforesis en Gel de Campo Pulsado , Genotipo , Humanos , Israel/epidemiología , Datos de Secuencia Molecular , Tipificación Molecular , Análisis de Secuencia de ADN , Serogrupo
14.
Appl Environ Microbiol ; 80(22): 6943-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25192993

RESUMEN

Salmonella encounters various stresses in the environment and in the host during infection. The effects of cold (5°C, 48 h), peroxide (5 mM H2O2, 5 h) and acid stress (pH 4.0, 90 min) were tested on pathogenicity of Salmonella. Prior exposure of Salmonella to cold stress significantly (P < 0.05) increased adhesion and invasion of cultured intestinal epithelial (Caco-2) cells. This increased Salmonella-host cell association was also correlated with significant induction of several virulence-associated genes, implying an increased potential of cold-stressed Salmonella to cause an infection. In Caco-2 cells infected with cold-stressed Salmonella, genes involved in the electron transfer chain were significantly induced, but no simultaneous significant increase in expression of antioxidant genes that neutralize the effect of superoxide radicals or reactive oxygen species was observed. Increased production of caspase 9 and caspase 3/7 was confirmed during host cell infection with cold-stressed Salmonella. Further, a prophage gene, STM2699, induced in cold-stressed Salmonella and a spectrin gene, SPTAN1, induced in Salmonella-infected intestinal epithelial cells were found to have a significant contribution in increased adhesion and invasion of cold-stressed Salmonella in epithelial cells.


Asunto(s)
Células Epiteliales/microbiología , Intestinos/microbiología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Frío , Regulación Bacteriana de la Expresión Génica , Humanos , Intestinos/citología , Salmonella typhimurium/fisiología , Estrés Fisiológico , Virulencia
15.
PLoS One ; 19(3): e0298419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38452024

RESUMEN

Genetic screening of pools of mutants can reveal genetic determinants involved in complex biological interactions, processes, and systems. We previously constructed two single-gene deletion resources for Salmonella enterica serovar Typhimurium 14028s in which kanamycin (KanR) and chloramphenicol (CamR) cassettes were used to replace non-essential genes. We have now used lambda-red recombination to convert the antibiotic cassettes in these resources into a tetracycline-resistant (TetR) version where each mutant contains a different 21-base barcode flanked by Illumina Read1 and Read2 primer sequences. A motility assay of a pool of the entire library, followed by a single-tube processing of the bacterial pellet, PCR, and sequencing, was used to verify the performance of the barcoded TetR collection. The new resource is useful for experiments with defined subsets of barcoded mutant strains where biological bottlenecks preclude high numbers of founder bacteria, such as in animal infections. The TetR version of the library will also facilitate the construction of triple mutants by transduction. The resource of 6197 mutants covering 3490 genes is deposited at Biological and Emerging Infections Resources (beiresources.org).


Asunto(s)
Salmonella enterica , Salmonella typhimurium , Animales , Salmonella typhimurium/genética , Serogrupo , Eliminación de Gen , Antibacterianos , Tetraciclina , Bacterias
16.
Front Microbiol ; 15: 1387498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812689

RESUMEN

Probiotic bacteria have been proposed as an alternative to antibiotics for the control of antimicrobial resistant enteric pathogens. The mechanistic details of this approach remain unclear, in part because pathogen reduction appears to be both strain and ecology dependent. Here we tested the ability of five probiotic strains, including some from common probiotic genera Lactobacillus and Bifidobacterium, to reduce binding of Salmonella enterica sv. Typhimurium to epithelial cells in vitro. Bifidobacterium longum subsp. infantis emerged as a promising strain; however, S. Typhimurium infection outcome in epithelial cells was dependent on inoculation order, with B. infantis unable to rescue host cells from preceding or concurrent infection. We further investigated the complex mechanisms underlying this interaction between B. infantis, S. Typhimurium, and epithelial cells using a multi-omics approach that included gene expression and altered metabolism via metabolomics. Incubation with B. infantis repressed apoptotic pathways and induced anti-inflammatory cascades in epithelial cells. In contrast, co-incubation with B. infantis increased in S. Typhimurium the expression of virulence factors, induced anaerobic metabolism, and repressed components of arginine metabolism as well as altering the metabolic profile. Concurrent application of the probiotic and pathogen notably generated metabolic profiles more similar to that of the probiotic alone than to the pathogen, indicating a central role for metabolism in modulating probiotic-pathogen-host interactions. Together these data imply crosstalk via small molecules between the epithelial cells, pathogen and probiotic that consistently demonstrated unique molecular mechanisms specific probiotic/pathogen the individual associations.

17.
BMC Genomics ; 14: 626, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24044554

RESUMEN

BACKGROUND: Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS), which is part of the oxidative burst encountered upon internalization of Salmonella enterica serovar Typhimurium (S. Typhimurium) by phagocytic cells. It has previously been established that, the ArcAB two-component system plays a critical role in ROS resistance, but the genes regulated by the system remained undetermined to date. We therefore investigated the ArcA regulon in aerobically growing S. Typhimurium before and after exposure to H2O2 by querying gene expression and other physiological changes in wild type and ΔarcA strains. RESULTS: In the ΔarcA strain, expression of 292 genes showed direct or indirect regulation by ArcA in response to H2O2, of which 141were also regulated in aerobiosis, but in the opposite direction. Gene set enrichment analysis (GSEA) of the expression data from WT and ΔarcA strains, revealed that, in response to H2O2 challenge in aerobically grown cells, ArcA down regulated multiple PEP-PTS and ABC transporters, while up regulating genes involved in glutathione and glycerolipid metabolism and nucleotide transport. Further biochemical analysis guided by GSEA results showed that deletion of arcA during aerobic growth lead to increased reactive oxygen species (ROS) production which was concomitant with an increased NADH/NAD+ ratio. In absence of ArcA under aerobic conditions, H2O2 exposure resulted in lower levels of glutathione reductase activity, leading to a decreased GSH (reduced glutathione)/GSSG (oxidized glutathione) ratio. CONCLUSION: The ArcA regulon was defined in 2 conditions, aerobic growth and the combination of peroxide treatment and aerobic growth in S. Typhimurium. ArcA coordinates a response that involves multiple aspects of the carbon flux through central metabolism, which ultimately modulates the reducing potential of the cell.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Regulón , Salmonella typhimurium/genética , Transcriptoma , Aerobiosis , Salmonella typhimurium/metabolismo
18.
Appl Environ Microbiol ; 79(23): 7281-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056458

RESUMEN

Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation.


Asunto(s)
Ácidos/toxicidad , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Salmonella typhimurium/fisiología , Estrés Fisiológico , Adaptación Fisiológica , Frío , Perfilación de la Expresión Génica , NAD/metabolismo , Presión Osmótica , Estrés Oxidativo , Peróxidos/toxicidad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/efectos de la radiación
20.
Front Cell Dev Biol ; 11: 1077350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009487

RESUMEN

The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA