Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Biol ; 19(1): 228, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674701

RESUMEN

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Asunto(s)
Neoplasias , Nucleósido-Difosfato Quinasa , Animales , Membranas Intracelulares , Ratones , Mitocondrias , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleósido Difosfato Quinasa D/metabolismo , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/metabolismo
2.
Metallomics ; 6(2): 263-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24154823

RESUMEN

When CnrX, the periplasmic sensor protein in the CnrYXH transmembrane signal transduction complex of Cupriavidus metallidurans CH34, binds the cognate metal ions Ni(II) or Co(II), the ECF-type sigma factor CnrH is made available in the cytoplasm for the RNA-polymerase to initiate transcription at the cnrYp and cnrCp promoters. Ni(II) or Co(II) are sensed by a metal-binding site with a N3O2S coordination sphere with octahedral geometry, where S stands for the thioether sulfur of the only methionine (Met123) residue of CnrX. The M123A-CnrX derivative has dramatically reduced signal propagation in response to metal sensing while the X-ray structure of Ni-bound M123A-CnrXs showed that the metal-binding site was not affected by the mutation. Ni(II) remained six-coordinate in M123A-CnrXs, with a water molecule replacing the sulfur as the sixth ligand. H32A-CnrXs, the soluble model of the wild-type membrane-anchored CnrX, was compared to the double mutants H32A-M123A-CnrXs and H32A-M123C-CnrXs to spectroscopically evaluate the role of this unique ligand in the binding site of Ni or Co. The Co- and Ni-bound forms of the protein display unusually blue-shifted visible spectra. TD-DFT calculations using structure-based models allowed identification and assignment of the electronic transitions of Co-bound form of the protein and its M123A derivative. Among them, the signature of the S-Co transition is distinguishable in the shoulder at 530 nm. In vitro affinity measurements point out the crucial role of Met123 in the selectivity for Ni or Co, and in vivo data support the conclusion that Met123 is a trigger of the signal transduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cupriavidus/metabolismo , Metales/metabolismo , Metionina/metabolismo , Modelos Biológicos , Transducción de Señal , Sitios de Unión , Simulación por Computador , Cinética , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutación/genética , Espectrofotometría Ultravioleta , Termodinámica , Espectroscopía de Absorción de Rayos X
3.
Science ; 344(6191): 1510-5, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24970086

RESUMEN

Dynamin superfamily molecular motors use guanosine triphosphate (GTP) as a source of energy for membrane-remodeling events. We found that knockdown of nucleoside diphosphate kinases (NDPKs) NM23-H1/H2, which produce GTP through adenosine triphosphate (ATP)-driven conversion of guanosine diphosphate (GDP), inhibited dynamin-mediated endocytosis. NM23-H1/H2 localized at clathrin-coated pits and interacted with the proline-rich domain of dynamin. In vitro, NM23-H1/H2 were recruited to dynamin-induced tubules, stimulated GTP-loading on dynamin, and triggered fission in the presence of ATP and GDP. NM23-H4, a mitochondria-specific NDPK, colocalized with mitochondrial dynamin-like OPA1 involved in mitochondria inner membrane fusion and increased GTP-loading on OPA1. Like OPA1 loss of function, silencing of NM23-H4 but not NM23-H1/H2 resulted in mitochondrial fragmentation, reflecting fusion defects. Thus, NDPKs interact with and provide GTP to dynamins, allowing these motor proteins to work with high thermodynamic efficiency.


Asunto(s)
Membrana Celular/metabolismo , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Fusión de Membrana , Mitocondrias/metabolismo , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasa D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA