Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 289(26): 18582-92, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24811172

RESUMEN

Early onset intellectual disabilities result in significant societal and economic costs and affect 1-3% of the population. The underlying genetic determinants are beginning to emerge and are interpreted in the context of years of work characterizing postsynaptic receptor and signaling functions of learning and memory. DNA sequence analysis of intellectual disability patients has revealed greater than 80 loci on the X-chromosome that are potentially linked to disease. One of the loci is zDHHC9, a gene encoding a Ras protein acyltransferase. Protein palmitoylation is a reversible modification that controls the subcellular localization and distribution of membrane receptors, scaffolds, and signaling proteins required for neuronal plasticity. Palmitoylation occurs in two steps. In the first step, autopalmitoylation, an enzyme-palmitoyl intermediate is formed. During the second step, the palmitoyl moiety is transferred to a protein substrate, or if no substrate is available, hydrolysis of the thioester linkage produces the enzyme and free palmitate. In this study, we demonstrate that two naturally occurring variants of zDHHC9, encoding R148W and P150S, affect the autopalmitoylation step of the reaction by lowering the steady state amount of the palmitoyl-zDHHC9 intermediate.


Asunto(s)
Aciltransferasas/genética , Aciltransferasas/metabolismo , Cromosomas Humanos X/genética , Discapacidad Intelectual/enzimología , Mutación Missense , Secuencia de Aminoácidos , Cromosomas Humanos X/metabolismo , Femenino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Lipoilación , Masculino , Datos de Secuencia Molecular
2.
Anal Biochem ; 460: 1-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24878334

RESUMEN

Palmitoylation, the posttranslational thioester-linked modification of a 16-carbon saturated fatty acid onto the cysteine residue of a protein, has garnered considerable attention due to its implication in a multitude of disease states. The signature DHHC motif (Asp-His-His-Cys) identifies a family of protein acyltransferases (PATs) that catalyze the S-palmitoylation of target proteins via a two-step mechanism. In the first step, autopalmitoylation, palmitate is transferred from palmitoyl-CoA to the PAT, creating a palmitoyl:PAT intermediate and releasing reduced CoA. The palmitoyl moiety is then transferred to a protein substrate in the second step of the reaction. We have developed an in vitro, single-well, fluorescence-based enzyme assay that monitors the first step of the PAT reaction by coupling the production of reduced CoA to the reduction of NAD(+) using the α-ketoglutarate dehydrogenase complex. This assay is suitable for determining PAT kinetic parameters, elucidating lipid donor specificity and measuring PAT inhibition by 2-bromopalmitate. Finally, it can be used for high-throughput screening (HTS) campaigns for modulators of protein palmitoylation.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Pruebas de Enzimas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Lipoilación , Aciltransferasas/antagonistas & inhibidores , Secuencias de Aminoácidos , Coenzima A/metabolismo , Detergentes/farmacología , Cinética , Metabolismo de los Lípidos , Lipoilación/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Palmitatos/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Fluorescencia , Especificidad por Sustrato
3.
J Biol Chem ; 287(41): 34337-48, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22904317

RESUMEN

Protein S-palmitoylation is a posttranslational modification in which a palmitoyl group is added to a protein via a thioester linkage on cysteine. Palmitoylation is a reversible modification involved in protein membrane targeting, receptor trafficking and signaling, vesicular biogenesis and trafficking, protein aggregation, and protein degradation. An example of the dynamic nature of this modification is the palmitoylation-depalmitoylation cycle that regulates the subcellular trafficking of Ras family GTPases. The Ras protein acyltransferase (PAT) consists of a complex of Erf2-Erf4 and DHHC9-GCP16 in yeast and mammalian cells, respectively. Both subunits are required for PAT activity, but the function of the Erf4 and Gcp16 subunits has not been established. This study elucidates the function of Erf4 and shows that one role of Erf4 is to regulate Erf2 stability through an ubiquitin-mediated pathway. In addition, Erf4 is required for the stable formation of the palmitoyl-Erf2 intermediate, the first step of palmitoyl transfer to protein substrates. In the absence of Erf4, the rate of hydrolysis of the active site palmitoyl thioester intermediate is increased, resulting in reduced palmitoyl transfer to a Ras2 substrate. This is the first demonstration of regulation of a DHHC PAT enzyme by an associated protein.


Asunto(s)
Aciltransferasas/metabolismo , Lipoilación/fisiología , Proteínas de la Membrana/metabolismo , Ácido Palmítico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas ras/metabolismo , Aciltransferasas/genética , Dominio Catalítico , Proteínas de la Membrana/genética , Ácido Palmítico/economía , Estabilidad Proteica , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas ras/genética
4.
Viruses ; 14(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35336938

RESUMEN

The spike proteins of enveloped viruses are transmembrane glycoproteins that typically undergo post-translational attachment of palmitate on cysteine residues on the cytoplasmic facing tail of the protein. The role of spike protein palmitoylation in virus biogenesis and infectivity is being actively studied as a potential target of novel antivirals. Here, we report that palmitoylation of the first five cysteine residues of the C-terminal cysteine-rich domain of the SARS-CoV-2 S protein are indispensable for infection, and palmitoylation-deficient spike mutants are defective in membrane fusion. The DHHC9 palmitoyltransferase interacts with and palmitoylates the spike protein in the ER and Golgi and knockdown of DHHC9 results in reduced fusion and infection of SARS-CoV-2. Two bis-piperazine backbone-based DHHC9 inhibitors inhibit SARS-CoV-2 S protein palmitoylation and the resulting progeny virion particles released are defective in fusion and infection. This establishes these palmitoyltransferase inhibitors as potential new intervention strategies against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Lipoilación , Glicoproteína de la Espiga del Coronavirus
5.
J Biol Chem ; 285(49): 38104-14, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20851885

RESUMEN

DHHC protein acyltransferases (PATs) catalyze the palmitoylation of eukaryotic proteins through an enzymatic mechanism that remains largely unexplored. In this study we have combined genetic and biochemical approaches to examine the molecular mechanism of palmitate transfer of the yeast Ras PAT, which is composed of Erf2 and Erf4. The palmitoylation reaction consists of two steps; they are autopalmitoylation of the enzyme to create a palmitoyl-Erf2 intermediate followed by the transfer of the palmitoyl moiety to the Ras substrate. Palmitoyl-CoA serves as the palmitate donor. To elucidate the kinetic properties of the Erf2·Erf4 PAT, we have developed a coupled enzyme assay that monitors the turnover of the palmitoyl-enzyme species indirectly by measuring the rate of CoASH release. Mutational analysis indicates that the DHHC motif constitutes the catalytic core of the enzyme required for autopalmitoylation and palmitoyl transfer to the Ras2 substrate. In the absence of Ras2, the palmitoyl-Erf2·Erf4 complex undergoes a cycle of hydrolysis and re-palmitoylation, implying that in the presence of palmitoyl-CoA, the complex is autopalmitoylated and competent to transfer palmitate to a protein substrate.


Asunto(s)
Aciltransferasas/metabolismo , Lipoilación/fisiología , Proteínas de la Membrana/metabolismo , Mutación Missense , Palmitoil Coenzima A/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aciltransferasas/genética , Secuencias de Aminoácidos , Proteínas de la Membrana/genética , Palmitoil Coenzima A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas ras/genética , Proteínas ras/metabolismo
6.
Phys Biol ; 7(2): 026011, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20526029

RESUMEN

Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane-localized fluorophore with the cytosol during fluorescence recovery after photobleaching (FRAP) experiments. The model simulations were used to design FRAP experiments with varying bleach region sizes on plasma membrane-localized wild-type GFP-Ras2 with a dual lipid anchor and mutant GFP-Ras2C318S with a single lipid anchor in live yeast cells to investigate diffusional mobility and the presence of any exchange processes operating in the time scale of our experiments. Model parameters estimated using data from FRAP experiments with a 1 microm x 1 microm bleach region-of-interest (ROI) and a 0.5 microm x 0.5 microm bleach ROI showed that GFP-Ras2, single or dual lipid modified, diffuses as single species with no evidence of exchange with a cytoplasmic pool. This is the first report of Ras2 mobility in the yeast plasma membrane. The methods developed in this study are generally applicable for studying diffusion and exchange of membrane-associated fluorophores using FRAP on commercial confocal laser scanning microscopes.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Proteínas ras/análisis , Proteínas ras/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas ras/genética
7.
Mol Cell Biol ; 26(8): 3243-55, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16581797

RESUMEN

Ras proteins are synthesized as cytosolic precursors, but then undergo posttranslational lipid addition, membrane association, and subcellular targeting to the plasma membrane. Although the enzymes responsible for farnesyl and palmitoyl lipid addition have been described, the mechanism by which these modifications contribute to the subcellular localization of Ras is not known. Following addition of the farnesyl group, Ras associates with the endoplasmic reticulum (ER), where palmitoylation occurs in Saccharomyces cerevisiae. The subsequent translocation of Ras from the ER to the plasma membrane does not require the classical secretory pathway or a functional Golgi apparatus. Vesicular and nonvesicular transport pathways for Ras proteins have been proposed, but the pathway is not known. Here we describe a genetic screen designed to identify mutants defective in Ras trafficking in S. cerevisiae. The screen implicates, for the first time, the class C VPS complex in Ras trafficking. Vps proteins are best characterized for their role in endosome and vacuole membrane fusion. However, the role of the class C Vps complex in Ras trafficking is distinct from its role in endosome and vacuole vesicle fusion, as a mitochondrial involvement was uncovered. Disruption of class C VPS genes results in mitochondrial defects and an accumulation of Ras proteins on mitochondrial membranes. Ras also fractionates with mitochondria in wild-type cells, where it is detected on the outer mitochondrial membrane by virtue of its sensitivity to protease treatment. These results point to a previously uncharacterized role of mitochondria in the subcellular trafficking of Ras proteins.


Asunto(s)
Membrana Celular/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas ras/metabolismo , Adenosina Trifosfatasas/metabolismo , Azidas/farmacología , Endopeptidasa K/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Mutación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Fracciones Subcelulares/metabolismo , Proteínas de Transporte Vesicular/clasificación , Proteínas de Transporte Vesicular/genética , Proteínas ras/genética
8.
Methods Mol Biol ; 2009: 169-177, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152403

RESUMEN

A family of zDHHC protein acyltransferase (PAT) enzymes catalyze the S-palmitoylation of target proteins via a two-step mechanism. The first step involves transfer of palmitate from the palmitoyl-CoA donor to the active site cysteine of the zDHHC PAT enzyme, releasing reduced CoA (CoASH). In the second step, the palmitoyl-PAT intermediate thioester reacts with a cysteine side chain within the target substrate to produce the palmitoylated substrate product or, in the absence of a protein substrate, the palmitoyl-PAT intermediate thioester is hydrolyzed and releases palmitate. Formation and resolution of the palmitoyl-PAT intermediate complex (autopalmitoylation) is measured using a coupled enzyme system that monitors the production of CoASH via reduction of NAD+ by the α-ketoglutarate dehydrogenase complex. This assay can be used to isolate and characterize modulators of autopalmitoylation and is scalable to high-throughput screening (HTS). A second fluorescence-based assay is described that monitors the hydrolysis of the palmitoyl-PAT thioester linked intermediate by thin-layer chromatography using a palmitoyl-CoA analog, BODIPY®-C12:0-CoA, as a substrate. These two assays provide a methodology to quantify the first enzymatic step of the two-step zDHHC PAT reaction.


Asunto(s)
Acetiltransferasas/química , Lipoilación , Ácido Palmítico/química , Proteínas Protozoarias/química , Toxoplasma/enzimología , Acetiltransferasas/metabolismo , Dominio Catalítico , Hidrólisis , Ácido Palmítico/metabolismo , Proteínas Protozoarias/metabolismo
9.
Mol Cell Biol ; 23(18): 6574-84, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12944483

RESUMEN

Subcellular localization of Ras proteins to the plasma membrane is accomplished in part by covalent attachment of a farnesyl moiety to the conserved CaaX box cysteine. Farnesylation targets Ras to the endoplasmic reticulum (ER), where additional processing steps occur, resulting in translocation of Ras to the plasma membrane. The mechanism(s) by which this occurs is not well understood. In this report, we show that plasma membrane localization of Ras2p in Saccharomyces cerevisiae does not require the classical secretory pathway or a functional Golgi apparatus. However, when the classical secretory pathway is disrupted, plasma membrane localization requires Erf2p, a protein that resides in the ER membrane and is required for efficient palmitoylation of Ras2p. Deletion of ERF2 results in a Ras2p steady-state localization defect that is more severe when combined with sec-ts mutants or brefeldin A treatment. The Erf2p-dependent localization of Ras2p correlates with the palmitoylation of Cys-318. An Erf2p-Erf4p complex has recently been shown to be an ER-associated palmitoyltransferase that can palmitoylate Cys-318 of Ras2p (S. Lobo, W. K. Greentree, M. E. Linder, and R. J. Deschenes, J. Biol. Chem. 277:41268-41273, 2002). Erf2-dependent palmitoylation as well as localization of Ras2p requires a region of the hypervariable domain adjacent to the CaaX box. These results provide evidence for the existence of a palmitoylation-dependent, nonclassical endomembrane trafficking system for the plasma membrane localization of Ras proteins.


Asunto(s)
Adenosina Trifosfatasas , Membrana Celular/metabolismo , Ácidos Palmíticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Proteínas ras/metabolismo , Aciltransferasas , Secuencia de Aminoácidos , Sitios de Unión , División Celular/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Proteínas ras/genética
10.
Mol Biol Cell ; 13(2): 412-24, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11854400

RESUMEN

The yeast "two-component" osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress. Like many well-characterized bacterial response regulators, Skn7p is a transcription factor. In this report we investigate the role of Skn7p in osmotic response gene activation. Our studies reveal that the Skn7p HSF-like DNA binding domain interacts with a cis-acting element identified upstream of OCH1 that is distinct from the previously defined HSE-like Skn7p binding site. Our data support a model in which Skn7p receiver domain phosphorylation affects transcriptional activation rather than DNA binding to this class of DNA binding site.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Manosiltransferasas , Glicoproteínas de Membrana/metabolismo , Proteínas Quinasas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Ácido Aspártico/metabolismo , Sitios de Unión , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Regiones Promotoras Genéticas , Elementos de Respuesta , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Análisis de Secuencia de ADN , Transducción de Señal/fisiología , Secuencias Repetidas Terminales , Activación Transcripcional
11.
J Biomol Struct Dyn ; 35(11): 2337-2350, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27498722

RESUMEN

Over the past 30 years, several hundred eukaryotic proteins spanning from yeast to man have been shown to be S-palmitoylated. This post-translational modification involves the reversible addition of a 16-carbon saturated fatty acyl chain onto the cysteine residue of a protein where it regulates protein membrane association and distribution, conformation, and stability. However, the large-scale proteome-wide discovery of new palmitoylated proteins has been hindered by the difficulty of identifying a palmitoylation consensus sequence. Using a bioinformatics approach, we show that the enrichment of hydrophobic and basic residues, the cellular context of the protein, and the structural features of the residues surrounding the palmitoylated cysteine all influence the likelihood of palmitoylation. We developed a new palmitoylation predictor that incorporates these identified features, and this predictor achieves a Matthews Correlation Coefficient of .74 using 10-fold cross validation, and significantly outperforms existing predictors on unbiased testing sets. This demonstrates that palmitoylation sites can be predicted with accuracy by taking into account not only physiochemical properties of the modified cysteine and its surrounding residues, but also structural parameters and the subcellular localization of the modified cysteine. This will allow for improved predictions of palmitoylated residues in uncharacterized proteins. A web-based version of this predictor is currently under development.


Asunto(s)
Cisteína/metabolismo , Lipoilación , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Fenómenos Químicos , Biología Computacional/métodos , Secuencia de Consenso , Cisteína/química , Bases de Datos de Proteínas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteoma/química
12.
Comb Chem High Throughput Screen ; 19(4): 262-74, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27009891

RESUMEN

The addition of palmitoyl moieties to proteins regulates their membrane targeting, subcellular localization, and stability. Dysregulation of the enzymes which catalyzed the palmitoyl addition and/or the substrates of these enzymes have been linked to cancer, cardiovascular, and neurological disorders, implying these enzymes and substrates are valid targets for pharmaceutical intervention. However, current chemical modulators of zDHHC PAT enzymes lack specificity and affinity, underscoring the need for screening campaigns to identify new specific, high affinity modulators. This report describes a mixture based screening approach to identify inhibitors of Erf2 activity. Erf2 is the Saccharomyces cerevisiae PAT responsible for catalyzing the palmitoylation of Ras2, an ortholog of the human Ras oncogene proteins. A chemical library developed by the Torrey Pines Institute for Molecular Studies consists of more than 30 million compounds designed around 68 molecular scaffolds that are systematically arranged into positional scanning and scaffold ranking formats. We have used this approach to identify and characterize several scaffold backbones and R-groups that reduce or eliminate the activity of Erf2 in vitro. Here, we present the analysis of one of the scaffold backbones, bis-cyclic piperazine. We identified compounds that inhibited Erf2 auto-palmitoylation activity using a fluorescence-based, coupled assay in a high throughput screening (HTS) format and validated the hits utilizing an orthogonal gel-based assay. Finally, we examined the effects of the compounds on cell growth in a yeast cell-based assay. Based on our results, we have identified specific, high affinity palmitoyl transferase inhibitors that will serve as a foundation for future compound design.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Lipoilación/efectos de los fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Animales , Humanos , Ácido Palmítico/química , Piperazina , Piperazinas , Saccharomyces cerevisiae , Bibliotecas de Moléculas Pequeñas/química
13.
Nat Commun ; 7: 12823, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27653213

RESUMEN

Endothelial dysfunction is a hallmark of systemic inflammatory response underlying multiple organ failure. Here we report a novel function of DHHC-containing palmitoyl acyltransferases (PATs) in mediating endothelial inflammation. Pharmacological inhibition of PATs attenuates barrier leakage and leucocyte adhesion induced by endothelial junction hyperpermeability and ICAM-1 expression during inflammation. Among 11 DHHCs detected in vascular endothelium, DHHC21 is required for barrier response. Mice with DHHC21 function deficiency (Zdhhc21dep/dep) exhibit marked resistance to injury, characterized by reduced plasma leakage, decreased leucocyte adhesion and ameliorated lung pathology, culminating in improved survival. Endothelial cells from Zdhhc21dep/dep display blunted barrier dysfunction and leucocyte adhesion, whereas leucocytes from these mice did not show altered adhesiveness. Furthermore, inflammation enhances PLCß1 palmitoylation and signalling activity, effects significantly reduced in Zdhhc21dep/dep and rescued by DHHC21 overexpression. Likewise, overexpression of wild-type, not mutant, PLCß1 augments barrier dysfunction. Altogether, these data suggest the involvement of DHHC21-mediated PLCß1 palmitoylation in endothelial inflammation.

14.
Mol Biol Cell ; 23(1): 188-99, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22031296

RESUMEN

Classical estrogen, progesterone, and androgen receptors (ERs, PRs, and ARs) localize outside the nucleus at the plasma membrane of target cells. From the membrane, the receptors signal to activate kinase cascades that are essential for the modulation of transcription and nongenomic functions in many target cells. ER, PR, and AR trafficking to the membrane requires receptor palmitoylation by palmitoylacyltransferase (PAT) protein(s). However, the identity of the steroid receptor PAT(s) is unknown. We identified the DHHC-7 and -21 proteins as conserved PATs for the sex steroid receptors. From DHHC-7 and -21 knockdown studies, the PATs are required for endogenous ER, PR, and AR palmitoylation, membrane trafficking, and rapid signal transduction in cancer cells. Thus the DHHC-7 and -21 proteins are novel targets to selectively inhibit membrane sex steroid receptor localization and function.


Asunto(s)
Aciltransferasas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Progesterona/metabolismo , Acetiltransferasas , Aciltransferasas/genética , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Epigénesis Genética , Estradiol/farmacología , Estradiol/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lipoilación , Sistema de Señalización de MAP Quinasas , Presenilina-2/genética , Presenilina-2/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Elementos de Respuesta , Transcripción Genética
15.
J Lipid Res ; 50(2): 233-42, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18827284

RESUMEN

Pharmacologic approaches to studying palmitoylation are limited by the lack of specific inhibitors. Recently, screens have revealed five chemical classes of small molecules that inhibit cellular processes associated with palmitoylation (Ducker, C. E., L. K. Griffel, R. A. Smith, S. N. Keller, Y. Zhuang, Z. Xia, J. D. Diller, and C. D. Smith. 2006. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol. Cancer Ther. 5: 1647-1659). Compounds that selectively inhibited palmitoylation of N-myristoylated vs. farnesylated peptides were identified in assays of palmitoyltransferase activity using cell membranes. Palmitoylation is catalyzed by a family of enzymes that share a conserved DHHC (Asp-His-His-Cys) cysteine-rich domain. In this study, we evaluated the ability of these inhibitors to reduce DHHC-mediated palmitoylation using purified enzymes and protein substrates. Human DHHC2 and yeast Pfa3 were assayed with their respective N-myristoylated substrates, Lck and Vac8. Human DHHC9/GCP16 and yeast Erf2/Erf4 were tested using farnesylated Ras proteins. Surprisingly, all four enzymes showed a similar profile of inhibition. Only one of the novel compounds, 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one [Compound V (CV)], and 2-bromopalmitate (2BP) inhibited the palmitoyltransferase activity of all DHHC proteins tested. Hence, the reported potency and selectivity of these compounds were not recapitulated with purified enzymes and their cognate lipidated substrates. Further characterization revealed both compounds blocked DHHC enzyme autoacylation and displayed slow, time-dependent inhibition but differed with respect to reversibility. Inhibition of palmitoyltransferase activity by CV was reversible, whereas 2BP inhibition was irreversible.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Nitrofenoles/farmacología , Palmitatos/farmacología , Tiofenos/farmacología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Humanos , Lipoilación , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supresoras de Tumor/metabolismo
16.
J Biol Chem ; 283(4): 1962-73, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18048366

RESUMEN

The yeast Sln1p sensor kinase is best known as an osmosensor involved in the regulation of the hyperosmolarity glycerol mitogen-activated protein kinase cascade. Down-regulation of Sln1 kinase activity occurs under hypertonic conditions and leads to phosphorylation of the Hog1p mitogen-activated protein kinase and increased osmotic stress-response gene expression. Conditions leading to kinase up-regulation include osmotic imbalance caused by glycerol retention in the glycerol channel mutant, fps1 (Tao, W., Deschenes, R. J., and Fassler, J. S. (1999) J. Biol. Chem. 274, 360-367). The hypothesis that Sln1p kinase activity is responsive to turgor was first suggested by the increased Sln1p kinase activity in mutants lacking Fps1p in which glycerol accumulation leads to water uptake. Also consistent with the turgor hypothesis is the observation that reduced turgor caused by treatment of cells with nystatin, a drug that increases membrane permeability and causes cell shrinkage, reduced Sln1p kinase activity (Tao, W., Deschenes, R. J., and Fassler, J. S. (1999) J. Biol. Chem. 274, 360-367; Reiser, V., Raitt, D. C., and Saito, H. (2003) J. Cell Biol. 161, 1035-1040). The turgor hypothesis is revisited here in the context of the identification and characterization of the cell wall gene, CCW12, as a determinant of Sln1p activity. Results of this analysis suggest that the activity of the plasma membrane localized Sln1p is affected by the presence or absence of specific outer cell wall proteins and that this effect is independent of turgor.


Asunto(s)
Pared Celular/metabolismo , Glicerol/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Antifúngicos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Pared Celular/genética , Glicoproteínas , Péptidos y Proteínas de Señalización Intracelular , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nistatina/farmacología , Ósmosis/fisiología , Proteínas Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Equilibrio Hidroelectrolítico/fisiología
17.
Nat Rev Mol Cell Biol ; 8(1): 74-84, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17183362

RESUMEN

Palmitate modifies both peripheral and integral membrane proteins and its addition can be permanent or transient, which makes it unique among the lipid modifications of proteins. The presence of palmitate on a protein affects how the protein interacts with lipids and proteins in a membrane compartment, and the reversibility of palmitoylation allows different modes of trafficking between membrane compartments. Here, we review recent studies that have provided insights into the mechanisms that mediate the functional consequences of this versatile modification.


Asunto(s)
Ácido Palmítico/metabolismo , Proteínas/metabolismo , Acilación , Animales , Humanos , Ácido Palmítico/química , Transporte de Proteínas , Proteínas/química , Proteoma/metabolismo , Termodinámica
18.
Methods ; 40(2): 143-50, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17012026

RESUMEN

Palmitoylation enhances membrane association and plays a role in the subcellular trafficking and signaling function of proteins. Unlike other forms of protein lipidation, such as prenylation and myristoylation, palmitoylation is reversible and can therefore play a regulatory role. Enzyme activities have recently been described in mammals and yeast that carry out the palmitoylation of protein substrates. Protein acyltransferases (PATs) transfer a palmitoyl moiety derived from palmitoyl-CoA to a free thiol of a substrate protein to create a labile thioester linkage. Biochemical characterization and kinetic analysis of this new family of enzymes requires methods to purify PATs and their substrates, as well as methods to assay PAT activity. We describe a series of methods using yeast and bacterial expression systems to study protein acyltransferases.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Aciltransferasas/análisis , Ácido Palmítico/metabolismo , Proteínas Recombinantes/análisis , Saccharomyces cerevisiae
19.
J Lipid Res ; 47(6): 1118-27, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16582420

RESUMEN

Protein palmitoylation refers to the posttranslational addition of a 16 carbon fatty acid to the side chain of cysteine, forming a thioester linkage. This acyl modification is readily reversible, providing a potential regulatory mechanism to mediate protein-membrane interactions and subcellular trafficking of proteins. The mechanism that underlies the transfer of palmitate or other long-chain fatty acids to protein was uncovered through genetic screens in yeast. Two related S-palmitoyltransferases were discovered. Erf2 palmitoylates yeast Ras proteins, whereas Akr1 modifies the yeast casein kinase, Yck2. Erf2 and Akr1 share a common sequence referred to as a DHHC (aspartate-histidine-histidine-cysteine) domain. Numerous genes encoding DHHC domain proteins are found in all eukaryotic genome databases. Mounting evidence is consistent with this signature motif playing a direct role in protein acyltransferase (PAT) reactions, although many questions remain. This review presents the genetic and biochemical evidence for the PAT activity of DHHC proteins and discusses the mechanism of protein-mediated palmitoylation.


Asunto(s)
Acetiltransferasas/metabolismo , Ácido Palmítico/metabolismo , Acetiltransferasas/genética , Aciltransferasas , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Filogenia , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Proteínas ras/genética , Proteínas ras/metabolismo
20.
J Biol Chem ; 280(35): 31141-8, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16000296

RESUMEN

Covalent lipid modifications mediate the membrane attachment and biological activity of Ras proteins. All Ras isoforms are farnesylated and carboxyl-methylated at the terminal cysteine; H-Ras and N-Ras are further modified by palmitoylation. Yeast Ras is palmitoylated by the DHHC cysteine-rich domain-containing protein Erf2 in a complex with Erf4. Here we report that H- and N-Ras are palmitoylated by a human protein palmitoyltransferase encoded by the ZDHHC9 and GCP16 genes. DHHC9 is an integral membrane protein that contains a DHHC cysteine-rich domain. GCP16 encodes a Golgi-localized membrane protein that has limited sequence similarity to yeast Erf4. DHHC9 and GCP16 co-distribute in the Golgi apparatus, a location consistent with the site of mammalian Ras palmitoylation in vivo. Like yeast Erf2.Erf4, DHHC9 and GCP16 form a protein complex, and DHHC9 requires GCP16 for protein fatty acyltransferase activity and protein stability. Purified DHHC9.GCP16 exhibits substrate specificity, palmitoylating H- and N-Ras but not myristoylated G (alphai1) or GAP-43, proteins with N-terminal palmitoylation motifs. Hence, DHHC9.GCP16 displays the properties of a functional human ortholog of the yeast Ras palmitoyltransferase.


Asunto(s)
Aciltransferasas/metabolismo , Genes ras , Proteínas de la Membrana/metabolismo , Proteínas ras/metabolismo , Aciltransferasas/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Distribución Tisular , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA