RESUMEN
Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane ß-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. ß-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with ß-DG, HEK-293 cells were transiently transfected with a plasmid carrying the ß-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing ß-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for ß-DG binding. A series of already known ß-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel ß-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with ß-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires ß-DG for a proper nuclear localization. These results expand the role of ß-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.
Asunto(s)
Distroglicanos , Distrofias Musculares , Humanos , Distroglicanos/química , Células HEK293 , Proteómica , Distrofias Musculares/metabolismo , Membrana Nuclear/metabolismoRESUMEN
In this review, we extensively describe the main post-translational modifications that give rise to the multiple proteoforms characterized to date in the human salivary proteome and their potential role. Most of the data reported were obtained by our group in over twenty-five years of research carried out on human saliva mainly by applying a top-down strategy. In the beginning, we describe the products generated by proteolytic cleavages, which can occur before and after secretion. In this section, the most relevant families of salivary proteins are also described. Next, we report the current information concerning the human salivary phospho-proteome and the limited news available on sulfo-proteomes. Three sections are dedicated to the description of glycation and enzymatic glycosylation. Citrullination and N- and C-terminal post-translational modifications (PTMs) and miscellaneous other modifications are described in the last two sections. Results highlighting the variation in the level of some proteoforms in local or systemic pathologies are also reviewed throughout the sections of the manuscript to underline the impact and relevance of this information for the development of new diagnostic biomarkers useful in clinical practice.
Asunto(s)
Proteoma , Proteínas y Péptidos Salivales , Humanos , Procesamiento Proteico-Postraduccional , Glicosilación , ProteolisisRESUMEN
Based on our previous proteomic study on Cavitating Ultrasound Aspirator (CUSA) fluid pools of Newly Diagnosed (ND) and Recurrent (R) glioblastomas (GBMs) of tumor core and periphery, as defined by 5-aminolevulinc acid (5-ALA) metabolite fluorescence, this work aims to apply a bioinformatic approach to investigate specifically into three sub-proteomes, i.e., Not Detected in Brain (NB), Cancer Related (CR) and Extracellular Vesicles (EVs) proteins following selected database classification. The study of these yet unexplored specific datasets aims to understand the high infiltration capability and relapse rate that characterizes this aggressive brain cancer. Out of the 587 proteins highly confidently identified in GBM CUSA pools, 53 proteins were classified as NB. Their gene ontology (GO) analysis showed the over-representation of blood coagulation and plasminogen activating cascade pathways, possibly compatible with Blood Brain Barrier damage in tumor disease and surgery bleeding. However, the NB group also included non-blood proteins and, specifically, histones correlated with oncogenesis. Concerning CR proteins, 159 proteins were found in the characterized GBM proteome. Their GO analysis highlighted the over-representation of many pathways, primarily glycolysis. Interestingly, while CR proteins were identified in ND-GBM exclusively in the tumor zones (fluorescence positive core and periphery zones) as predictable, conversely, in R-GBM they were unexpectedly characterized prevalently in the healthy zone (fluorescence negative tumor periphery). Relative to EVs protein classification, 60 proteins were found. EVs are over-released in tumor disease and are important in the transport of biological macromolecules. Furthermore, the presence of EVs in numerous body fluids makes them a possible low-invasive source of brain tumor biomarkers to be investigated. These results give new hints on the molecular features of GBM in trying to understand its aggressive behavior and open to more in-depth investigations to disclose potential disease biomarkers.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteoma/metabolismo , Neoplasias Encefálicas/genética , Vesículas Extracelulares/metabolismo , Glioblastoma/genética , Glucólisis , Humanos , Proteoma/genéticaRESUMEN
The present investigation aimed to explore the intact proteome of tissues of pediatric brain tumors of different WHO grades and localizations, including medulloblastoma, pilocytic astrocytoma, and glioblastoma, in comparison with the available data on ependymoma, to contribute to the understanding of the molecular mechanisms underlying the onset and progression of these pathologies. Tissues have been homogenized in acidic water−acetonitrile solutions containing proteases inhibitors and analyzed by LC−high resolution MS for proteomic characterization and label-free relative quantitation. Tandem MS spectra have been analyzed by either manual inspection or software elaboration, followed by experimental/theoretical MS fragmentation data comparison by bioinformatic tools. Statistically significant differences in protein/peptide levels between the different tumor histotypes have been evaluated by ANOVA test and Tukey's post-hoc test, considering a p-value > 0.05 as significant. Together with intact protein and peptide chains, in the range of molecular mass of 1.3−22.8 kDa, several naturally occurring fragments from major proteins, peptides, and proteoforms have been also identified, some exhibiting proper biological activities. Protein and peptide sequencing allowed for the identification of different post-translational modifications, with acetylations, oxidations, citrullinations, deamidations, and C-terminal truncations being the most frequently characterized. C-terminal truncations, lacking from two to four amino acid residues, particularly characterizing the ß-thymosin peptides and ubiquitin, showed a different modulation in the diverse tumors studied. With respect to the other tumors, medulloblastoma, the most frequent malignant brain tumor of the pediatric age, was characterized by higher levels of thymosin ß4 and ß10 peptides, the latter and its des-IS form particularly marking this histotype. The distribution pattern of the C-terminal truncated forms was also different in glioblastoma, particularly underlying gender differences, according to the definition of male and female glioblastoma as biologically distinct diseases. Glioblastoma was also distinguished for the peculiar identification of the truncated form of the α-hemoglobin chain, lacking the C-terminal arginine, and exhibiting oxygen-binding and vasoconstrictive properties different from the intact form. The proteomic characterization of the undigested proteome, following the top-down approach, was challenging to originally investigate the post-translational events that differently characterize pediatric brain tumors. This study provides a contribution to elucidate the molecular profiles of the solid tumors most frequently affecting the pediatric age, and which are characterized by different grades of aggressiveness and localization.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioblastoma , Meduloblastoma , Neoplasias Encefálicas/metabolismo , Niño , Femenino , Humanos , Masculino , Péptidos/química , Proteoma/metabolismo , Proteómica/métodosRESUMEN
In the current work, a series of novel 4-benzyloxy and 4-(2-phenylethoxy) chalcone fibrate hybrids (10a-o) and (11a-e) were synthesized and evaluated as new PPARα agonists in order to find new agents with higher activity and fewer side effects. The 2-propanoic acid derivative 10a and the 2-butanoic acid congener 10i showed the best overall PPARα agonistic activity showing Emax% values of 50.80 and 90.55%, respectively, and EC50 values of 8.9 and 25.0 µM, respectively, compared to fenofibric acid with Emax = 100% and EC50 = 23.22 µM, respectively. These two compounds also stimulated carnitine palmitoyltransferase 1A gene transcription in HepG2 cells and PPARα protein expression. Molecular docking simulations were performed for the newly synthesized compounds to study their predicted binding pattern and energies in PPARα active site to rationalize their promising activity. In vivo, compounds 10a and 10i elicited a significant hypolipidemic activity improving the lipid profile in triton WR-1339-induced hyperlipidemic rats, including serum triglycerides, total cholesterol, LDL, HDL and VLDL levels. Compound 10i possessed better anti-hyperlipidemic activity than 10a. At a dose of 200 mg/kg, it demonstrated significantly lower TC, TG, LDL and VLDL levels than that of fenofibrate at the same dose with similar HDL levels. Compounds 10i and 10a possessed atherogenic indices (CRR, AC, AI, CRI-II) like that of fenofibrate. Additionally, a promising antioxidant activity indicated by the increased tissue reduced glutathione and plasma total antioxidant capacity with decreased plasma malondialdehyde levels was demonstrated by compounds 10a and 10i. No histopathological alterations were recorded in the hepatic tissue of compound 10i (200 mg/kg).
Asunto(s)
Antioxidantes/química , Chalconas/química , Diseño de Fármacos , Ácidos Fíbricos/química , Hipolipemiantes/síntesis química , PPAR alfa/agonistas , Animales , Sitios de Unión , Dominio Catalítico , Humanos , Hiperlipidemias/inducido químicamente , Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/metabolismo , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Lípidos/sangre , Hígado/metabolismo , Hígado/patología , Masculino , Simulación del Acoplamiento Molecular , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas , Relación Estructura-Actividad , Activación Transcripcional/efectos de los fármacosRESUMEN
Human whole saliva is a bodily fluid that can be obtained easily by noninvasive techniques. Specimens can be collected by the patient also at home in order to monitor health status and variations of several analytes of clinical interest. The contributions to whole saliva include secretions from salivary glands and, among others, from the gingival crevicular fluid that derives from the epithelial mucosa. Therefore, saliva is currently a relevant diagnostic fluid for many substances, including steroids, nonpeptide hormones, therapeutic drugs, and drugs of abuse. This review at first briefly describes the different contributions to whole saliva. A section illustrates the procedures for the collection, handling, and storage of salivary specimens. Another section describes the present use of whole saliva for diagnostic purposes and its specific utilization for the diagnosis of several local and systemic diseases. The final sections illustrate the future opportunities offered by various not conventional techniques with a focus on the most recent -omic investigations. It describes the various issues that have to be taken into account to avoid false positives and negatives, such as the strength of the experimental plan, the adequacy of the number of samples under study, and the proper choice of controls.
Asunto(s)
Biomarcadores/análisis , Saliva/química , Humanos , Proteoma/análisis , ProteómicaRESUMEN
BACKGROUND: Many efforts have been performed in the last decade to accomplish the genomic and proteomic characterization of pediatric adamantinomatous craniopharyngioma with the purpose to elucidate the molecular mechanisms underlying the onset and development of this pediatric brain tumor, its high recurrence rate, and, although classified as a histologically benign neoplasm, its aggressive behavior. METHODS: The focus of this review is to perform the new comparison of the proteomic profiles of the solid component and the intracystic fluid of adamantinomatous craniopharyngioma based on our previous results, obtained by both the top-down and the bottom-up proteomic approaches, to disclose differences and similarities, and to discuss the results in the context of the most recent literature. RESULTS AND CONCLUSIONS: Proteins and peptides identified in the cyst fluid and in the solid component of adamantinomatous craniopharyngioma (AC) include beyond markers of inflammation (i.e., alpha-defensins), proteins involved in cell migration and protein degradation (i.e., beta-thymosin and ubiquitin peptides), whose main role might be in tumor growth and infiltration of the surrounding neural structures. These last appeared different in the solid components compared with the cyst fluid, missing their terminal part in the solid tissue, a feature generally associated to malignancies, which might represent a distinct molecular site for an aggressive behavior of AC.
Asunto(s)
Craneofaringioma , Neoplasias Hipofisarias , Niño , Líquido Quístico , Humanos , Recurrencia Local de Neoplasia , ProteómicaRESUMEN
Proteomic surveys with top-down platforms are today revealing thousands of naturally occurring fragments of bigger proteins. Some of them have not functional meaning because they derive from pathways responsible for protein degradation, but many have specific functions, often completely different from that one of the parent proteins. These peptides encrypted in the protein sequence are nowadays called cryptides. They are frequent in the animal and plant kingdoms and represent a new interesting -omic field of investigation. To point out how much widespread is their presence, we describe here the most studied cryptides from very common sources such as serum albumin, immunoglobulins, hemoglobin, and from saliva and milk proteins. Given its vastness, it is unfeasible to cover the topic exhaustively, therefore only several selected examples of cryptides from other sources are thereafter reported. Demanding is the development of new -omic platforms for the functional screening of new cryptides, which could provide suggestion for peptides and peptido-mimetics with variegate fields of application.
Asunto(s)
Péptidos , Proteínas de Plantas , Plantas , Animales , Humanos , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismoRESUMEN
Because of the distinctive features of the oral cavity, the determination of the proteins involved in the formation of the "oral protein pellicle" is demanding. The present study investigated the susceptibility of several human basic proline-rich peptides, named P-H, P-D, P-F, P-J, and II-2, as substrates of transglutaminase-2. The reactivity of the P-C peptide and statherin was also investigated. Peptides purified from human whole saliva were incubated with the enzyme in the presence or in the absence of monodansyl-cadaverine. Mass spectrometry analyses of the reaction products highlighted that P-H and P-D (P32 and A32 variants) were active substrates, II-2 was less reactive, and P-F and P-J showed very low reactivity. P-C and statherin were highly reactive. All of the peptides formed cyclo derivatives, and only specific glutamine residues were involved in the cycle formation and reacted with monodansyl-cadaverine: Q29 of P-H, Q37 of P-D, Q21 of II-2, Q41 of P-C, and Q37 of statherin were the principal reactive residues. One or two secondary glutamine residues of only P-H, P-D P32, P-C, and statherin were hierarchically susceptible to the reaction with monodansyl-cadaverine. MS and MS/MS data were deposited to the ProteomeXchange Consortium ( http://www.ebi.ac.uk/pride ) via the PRIDE partner repository with the data set identifier PXD014658.
Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas Salivales Ricas en Prolina/metabolismo , Transglutaminasas/metabolismo , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Cinética , Lisina/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Saliva/metabolismo , Proteínas Salivales Ricas en Prolina/química , Proteínas Salivales Ricas en Prolina/aislamiento & purificación , Proteínas y Péptidos Salivales/metabolismo , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.
Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Proteómica , Glicosilación , Humanos , Oxidación-ReducciónRESUMEN
Human basic proline-rich proteins and basic glycosylated proline-rich proteins, encoded by the polymorphic PRB1-4 genes and expressed only in parotid glands, are the most complex family of adult salivary proteins. The family includes 11 parent peptides/proteins and more than 6 parent glycosylated proteins, but a high number of proteoforms with rather similar structures derive from polymorphisms and post-translational modifications. 55 new components of the family were characterized by top-down liquid chromatography-mass spectrometry and tandem-mass platforms, bringing the total number of proteoforms to 109. The new components comprise the three variants P-H S1 â A, P-Ko P36 â S, and P-Ko A41 â S and several of their naturally occurring proteolytic fragments. The paper represents an updated reference for the peptides included in the heterogeneous family of proteins encoded by PRB1/PRB4. MS data are available via ProteomeXchange with the identifier PXD009813.
Asunto(s)
Procesamiento Proteico-Postraduccional , Saliva/química , Proteínas Salivales Ricas en Prolina/metabolismo , Adulto , Secuencia de Aminoácidos , Cromatografía Liquida , Femenino , Glicosilación , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Glándula Parótida/química , Glándula Parótida/metabolismo , Péptidos/análisis , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Proteolisis , Proteómica/métodos , Proteínas Salivales Ricas en Prolina/química , Proteínas Salivales Ricas en Prolina/genética , Proteínas Salivales Ricas en Prolina/aislamiento & purificación , Espectrometría de Masas en TándemRESUMEN
INTRODUCTION: Care in pediatrics often refers to treatments directed to adults. However, childhood is a specific life period, with molecular pathways connected to development and thereby it requires distinctive considerations and special treatments under disease. Proteomics can help to elucidate the molecular mechanisms underlying the human development and disease onset in pediatric age and this review is devoted to underline the results recently obtained in the field. AREAS COVERED: The contribution of proteomics to the characterization of physiological modifications occurring during human development is presented. The proteomic studies carried out to elucidate the molecular mechanisms underlying different pediatric pathologies and to discover new markers for early diagnosis and prognosis of disease, comprising genetic and systemic pathologies, sepsis and pediatric oncology are thereafter reported. The investigations concerning milk composition in human and farm mammals are also presented. Finally, the chances offered by the integration of different -omic platforms are discussed. Expert commentary: The growing utilization of holistic technologies such as proteomics, metabolomics and microbiomics will allow, in the near future, to define at the molecular level the complexity of human development and related diseases, with great benefit for future generations.
Asunto(s)
Biomarcadores , Pediatría/tendencias , Proteoma/genética , Proteómica , Adulto , Niño , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Metabolómica , PronósticoRESUMEN
PURPOSE: Among the different types of kidney stones, matrix stones are uncommon urinary calculi composed of a soft, pliable, amorphous substance with little crystalline content. To gain insight into the pathogenesis we investigated the protein component by analyzing the proteomic profiles of surgically removed matrix stones. MATERIALS AND METHODS: A total of 5 stones were harvested from 4 patients who underwent surgery for medical reasons at 3 clinical centers during a 7-year period. Matrix stone proteome characterization was performed by mass spectrometry based techniques using an integrated top-down/bottom-up proteomic platform. RESULTS: We identified 142 nonredundant proteins and peptides across all samples. Neutrophil defensin 1, and proteins S100-A8 and S100-A9 were the main components of these renal calculi. CONCLUSIONS: The abundance of identified inflammatory molecules points to an inflammatory process as the event that initializes soft calculi formation rather than as a consequence of such formation. The post-translational oxidative changes in S100-A8 and A9, and the presence of thymosin ß-4, granulins and ubiquitin also suggest the intervention of host defenses through a superimposed, vigorous counter inflammatory process. The post-translational changes seen in the proteins and peptides, and the known self-assembling capability of S100-A8 and S100-A9 probably explain the gelatinous consistency of these stones.
Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Inflamación/metabolismo , Proteómica/métodos , Cálculos Urinarios/química , Cromatografía Liquida , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de TiempoRESUMEN
The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins ß4 and ß10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation.
Asunto(s)
Tejido Adiposo/química , Líquidos Corporales/química , Lipectomía , Proteoma/análisis , Medicina Regenerativa , Tejido Adiposo/citología , Líquidos Corporales/citología , Cromatografía Liquida/métodos , Femenino , Humanos , Espectrometría de Masas/métodos , Proteoma/química , Proteoma/clasificación , Proteómica/métodosAsunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelosas , Ependimoma , Meduloblastoma , Niño , Humanos , ProteómicaRESUMEN
An important contribution to the variability of any proteome is given by the time dimension that should be carefully considered to define physiological modifications. To this purpose, whole saliva proteome was investigated in a wide age range. Whole saliva was collected from 17 preterm newborns with a postconceptional age at birth of 178-217 days. In these subjects sample collection was performed serially starting immediately after birth and within about 1 year follow-up, gathering a total of 111 specimens. Furthermore, whole saliva was collected from 182 subjects aged between 0 and 17 years and from 23 adults aged between 27 and 57 years. The naturally occurring intact salivary proteome of the 316 samples was analyzed by low- and high-resolution HPLC-ESI-MS platforms. Proteins peculiar of the adults appeared in saliva with different time courses during human development. Acidic proline-rich proteins encoded by PRH2 locus and glycosylated basic proline-rich proteins encoded by PRB3 locus appeared following 180 days of postconceptional age, followed at 7 months (±2 weeks) by histatin 1, statherin, and P-B peptide. The other histatins and acidic proline-rich proteins encoded by PRH1 locus appeared in whole saliva of babies from 1 to 3 weeks after the normal term of delivery, S-type cystatins appeared at 1 year (±3 months), and basic proline-rich proteins appeared at 4 years (±1 year) of age. All of the proteinases involved in the maturation of salivary proteins were more active in preterm than in at-term newborns, on the basis of the truncated forms detected. The activity of the Fam20C kinase, involved in the phosphorylation of various proteins, started around 180 days of postconceptional age, slowly increased reaching values comparable to adults at about 2 years (±6 months) of age. Instead, MAPK14 involved in the phosphorylation of S100A9 was fully active since birth also in preterm newborns.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Proteoma/metabolismo , Proteómica/métodos , Saliva/química , Fenómenos Cronobiológicos/genética , Humanos , Recien Nacido Prematuro , Proteoma/genética , Saliva/metabolismo , Factores de TiempoRESUMEN
Liquid chromatography in coupling with high-resolution ESI-LTQ-Orbitrap mass spectrometry was applied for a proteomic study of pediatric pilocytic astrocytoma brain tumor intracystic fluid by an integrated top-down/bottom-up platform. Both of the proteomic strategies resulted complementary and support each other in contributing to a wide characterization of the protein and peptide content of the tumor fluid. Top-down approach allowed to identify several proteins and peptides involved in different biological activities together with the characterization of interesting proteoforms such as fibrinopeptide A and its truncated form, fibrinopeptide B, complement C3f fragments, ß-thymosin peptides, ubiquitin, several apolipoproteins belonging to A and C families, apolipoprotein J and D, and cystatin C. Of particular interest resulted the identification of a N-terminal truncated cystatin C proteoform, likely involved in immune response mechanism modulations and the identification of oxidized and glycosylated apolipoproteins including disulfide bridge dimeric forms. The bottom-up approach confirmed some of the experimental data findings together with adding the characterization of high-molecular-mass proteins in the samples. These data could contribute to elucidate the molecular mechanisms involved in onset and progression of the disease and cyst development.
Asunto(s)
Astrocitoma/metabolismo , Líquido Quístico/metabolismo , Proteómica/métodos , Niño , Cromatografía Líquida de Alta Presión , Cistatina C/metabolismo , Humanos , Espectrometría de MasasRESUMEN
The combination of top-down and bottom-up platforms was utilized for the LC-MS proteomic characterization of the intracystic fluid of adamantinomatous craniopharyngioma pediatric brain tumor disease. Proteins and peptides characterization was achieved by high-resolution LC-ESI-LTQ-Orbitrap-MS analysis while low-resolution LC-ESI-IT-MS was applied for the complete screening of the samples and the evaluation of the protein distribution within patients. Top-down analyses were applied to liquid/liquid extracted samples while bottom-up analyses were performed after trypsin digestion of both untreated and pretreated samples. The two proteomic approaches were complementary for the characterization of the proteome of craniopharyngioma intracystic fluid. Proteins and peptides involved in inflammation, mineralization processes and lipid transport were identified, in agreement with the calcium flecks, cholesterol granules and bone residues characteristic of this fluid. Apolipoprotein A-I, A-II, C-I and J, hemoglobin fragments, ubiquitin, α-2-HS-glycoprotein or fetuin A, α-1-antichymotrypsin, vitamin D binding protein, and α-1-acid glycoprotein were characterized. These data could be relevant for the comprehension of the processes involved in the pathogenesis of the disease and the development of the cyst and could contribute to the individuation of therapeutic targets for the reduction of the cyst volume delaying and/or avoiding invasive surgical treatments.
Asunto(s)
Craneofaringioma/química , Líquido Quístico/química , Neoplasias Hipofisarias/química , Proteoma/análisis , Proteómica/métodos , Adolescente , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Espectrometría de Masas , Fragmentos de Péptidos/análisis , TripsinaRESUMEN
The immunomodulatory, anti-inflammatory and regenerative properties of the human amniotic mesenchymal stromal cells (hAMSCs) secretome are acknowledged but the understanding of the specific bioactive components remains incomplete. To address these limitations, the present investigation aimed to profile the proteins and peptides content of the hAMSC secretome through sample pretreatment and fractionation on 10â¯kDa molecular cut-off FASP (Filter Aided Sample Preparation) device and LC-MS analysis. The filter retained protein fraction underwent trypsin digestion, while the unretained was collected unchanged for intact small proteins and peptides analysis. This combined approach (C-FASP) collects in a single step two complementary fractions, advantageously saving sample volume and time of analysis. The bottom-up analysis of the C-FASP proteins fraction >10â¯kDa confirmed our previous findings, establishing a set of proteins consistently characterizing the hAMSC secretome. The analysis of the fraction <10â¯kDa, never been investigated to our knowledge, identified peptide fragments of thymosin beta 4 and beta 10, collagen alpha 1 chains I and III, alpha-enolase, and glyceraldehyde-3-phosphate dehydrogenase, involved in wound healing, anti-inflammatory response, tissue repair and regeneration, key biological activities of the secretome. C-FASP provided a comprehensive molecular profile of the hAMSC secretome offering new insights for enhanced therapeutic applications in regenerative medicine. SIGNIFICANCE: In this investigation we originally present the comprehensive proteomic investigation of the human amniotic mesenchymal stromal cell secretome by combining the analysis of the proteome and of the peptidome following sample pretreatment and fractionation by Filter Aided Sample Preparation (FASP) with 10â¯kDa molecular cut-off in coupling with LC-MS analysis. The proteome fraction retained by FASP filter was analyzed after enzymatic digestion, while the unretained fraction, below 10â¯kDa molecular mass, was analyzed unchanged in its intact form. This dual approach provides novel insights, previously unexplored, into the molecular components potentially responsible for the immunomodulatory and anti-inflammatory properties of the hAMSC secretome. These findings could significantly enhance the therapeutic potential of hAMSCs in regenerative medicine.