Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064506

RESUMEN

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

2.
Nat Astron ; 8(5): 617-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798716

RESUMEN

Magnetars-highly magnetized neutron stars-are thought to be the most likely progenitors for fast radio bursts (FRBs). Freely precessing magnetars are further invoked to explain the repeating FRBs. We report here on new high-cadence radio observations of the magnetar XTE J1810-197 recorded shortly after an X-ray outburst. We interpret the polarization variations of the magnetar radio emission as evidence for the magnetar undergoing free precession following the outburst while its magnetosphere slowly untwists. The observations of precession being damped on a timescale of months argue against the scenario of freely precessing magnetars as the origin of repeating FRBs. Using free-precession models based on relaxing ellipticity with a decay of the wobble angle, we find the magnetar ellipticity to be in good agreement with theoretical predictions from nuclear physics. Our precise measurement of the magnetar's geometry can also further help in refining the modelling of X-ray light curves and constrain the star's compactness.

3.
Science ; 365(6457): 1013-1017, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31488685

RESUMEN

Binary pulsars are affected by general relativity (GR), causing the spin axis of each pulsar to precess. We present polarimetric radio observations of the pulsar PSR J1906+0746 that demonstrate the validity of the geometrical model of pulsar polarization. We reconstruct the (sky-projected) polarization emission map over the pulsar's magnetic pole and predict the disappearance of the detectable emission by 2028. Two tests of GR are performed using this system, including the spin precession for strongly self-gravitating bodies. We constrain the relativistic treatment of the pulsar polarization model and measure the pulsar beaming fraction, with implications for the population of neutron stars and the expected rate of neutron star mergers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA