Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Hum Mutat ; 39(5): 621-634, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29392890

RESUMEN

The Loeys-Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor-ß (TGF-ß) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF-ß signaling. More recently, TGF-ß ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF-ß pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF-ß signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.


Asunto(s)
Estudios de Asociación Genética , Síndrome de Loeys-Dietz/genética , Mutación/genética , Proteína Smad2/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/genética , Animales , Modelos Animales de Enfermedad , Humanos , Síndrome de Loeys-Dietz/diagnóstico , Ratones , Transducción de Señal/genética
2.
Hum Mutat ; 32(2): E2018-25, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21280141

RESUMEN

Kabuki Syndrome (KS) is a rare syndrome characterized by intellectual disability and multiple congenital abnormalities, in particular a distinct dysmorphic facial appearance. KS is caused by mutations in the MLL2 gene, encoding an H3K4 histone methyl transferase which acts as an epigenetic transcriptional activator during growth and development. Direct sequencing of all 54 exons of the MLL2 gene in 45 clinically well-defined KS patients identified 34 (75.6%) different mutations. One mutation has been described previously, all others are novel. Clinically, all KS patients were sporadic, and mutations were de novo for all 27 families for which both parents were available. We detected nonsense (n=11), frameshift (n=17), splice site (n=4) and missense (n=2) mutations, predicting a high frequency of absent or non-functional MLL2 protein. Interestingly, both missense mutations located in the C-terminal conserved functional domains of the protein. Phenotypically our study indicated a statistically significant difference in the presence of a distinct facial appearance (p=0.0143) and growth retardation (p=0.0040) when comparing KS patients with an MLL2 mutation compared to patients without a mutation. Our data double the number of MLL2 mutations in KS reported so far and widen the spectrum of MLL2 mutations and disease mechanisms in KS.


Asunto(s)
Proteínas de Unión al ADN/genética , Mutación , Proteínas de Neoplasias/genética , Anomalías Múltiples/genética , Cara/anomalías , Femenino , Enfermedades Hematológicas/genética , Humanos , Masculino , Enfermedades Vestibulares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA