Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Data ; 11(1): 209, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360806

RESUMEN

Reservoirs play a crucial role in regulating water availability and enhancing water security. Here, we develop NASA's Visible Infrared Imaging Radiometer Suite (VIIRS) based Global Water Reservoir (GWR) product, consisting of measurements of reservoir area, elevation, storage, evaporation rate, and evaporation loss for 164 large global reservoirs. The dataset is available at 8-day and monthly temporal resolutions. Since the Moderate Resolution Imaging Spectroradiometer (MODIS) is close to the end of its life, we further evaluated the consistency between MODIS and VIIRS-based GWR to ensure continuity to the 20+ year MODIS GWR product. Independent assessment of VIIRS reservoir storage (8-day) retrievals against in-situ measurements shows an average of R2 = 0.84, RMSE = 0.47 km3, and NRMSE = 16.45%. The evaporation rate has an average of R2 = 0.56, RMSE = 1.32 mm/day, and NRMSE = 28.14%. Furthermore, results show good consistency (R2 ≥ 0.90) between the VIIRS and MODIS-based product components, confirming that long-term data continuity can be achieved. This dataset can provide valuable insights for long-term trend analysis, hydrological modeling, and understanding hydroclimatic extremes in the context of reservoirs.

2.
Remote Sens (Basel) ; Volume 9(Iss 3)2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32021703

RESUMEN

The Advanced Very High Resolution Radiometer (AVHRR) sensor provides a unique global remote sensing dataset that ranges from the 1980's to the present. Over the years, several efforts have been made on the calibration of the different instruments to establish a consistent land surface reflectance time-series and to augment the AVHRR data record with data from other sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we present a summary of all the corrections applied to the AVHRR Surface Reflectance and NDVI Version 4 Product, developed in the framework of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program. These corrections result from assessment of the geo-location, improvement of the cloud masking and calibration monitoring. Additionally, we evaluate the performance of the surface reflectance over the AERONET sites by a cross-comparison with MODIS, which is an already validated product, and evaluation of a downstream Leaf Area Index (LAI) product. We demonstrate the utility of this long time-series by estimating the winter wheat yield over the USA. The methods developed by [1] and [2] are applied to both the MODIS and AVHRR data. Comparison of the results from both sensors during the MODIS-era shows the consistency of the dataset with similar errors of 10%. When applying the methods to AVHRR historical data from the 1980's, the results have errors equivalent to those derived from MODIS.

3.
J Geophys Res Atmos ; 118(17): 9753-9765, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25821661

RESUMEN

[1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS.

4.
Proc Natl Acad Sci U S A ; 104(12): 4820-3, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17360360

RESUMEN

Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation-atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of approximately 25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests.


Asunto(s)
Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Brasil , Geografía , Tamaño de los Órganos , Hojas de la Planta/efectos de la radiación , Lluvia , Comunicaciones por Satélite/instrumentación , Luz Solar , Factores de Tiempo , Árboles/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA