Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 33(1): 180-193, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34986302

RESUMEN

Targeted contrast agents (CAs) can improve magnetic resonance imaging (MRI) for accurate cancer diagnosis. In this work, we used the Shiga toxin B-subunit (STxB) as a targeting agent, which binds to Gb3, a glycosphingolipid highly overexpressed on the surface of tumor cells. We developed STxB-targeted MRI probes from cyclic peptide scaffolds functionalized with six to nine monoamide DO3A[Gd(III)] chelates. The influence of structural constraints on the longitudinal relaxivity (r1) of the CAs has been studied. The cyclic peptide carrying nine monoamide DO3A[Gd(III)] exhibited a r1 per compound of 32 and 93 mM-1s-1 at 9.4 and 1.5 T, respectively. Its conjugation to the pentameric STxB protein led to a 70 kDa compound with a higher r1 of 150 and 475 mM-1 s-1 at 9.4 and 1.5 T, respectively. Specific accumulation and cellular distribution of this conjugate in Gb3-expressing cancer cells were demonstrated using immunofluorescence microscopy and quantified by an inductively coupled plasma-mass spectrometry dosage of Gd(III). Such an agent should enable the in vivo detection by MRI of tumors expressing Gb3 receptors.


Asunto(s)
Medios de Contraste
2.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614009

RESUMEN

The interaction between Respiratory Syncytial Virus phosphoprotein P and nucleoprotein N is essential for the formation of the holo RSV polymerase that carries out replication. In vitro screening of antivirals targeting the N-P protein interaction requires a molecular interaction model, ideally consisting of a complex between N protein and a short peptide corresponding to the C-terminal tail of the P protein. However, the flexibility of C-terminal P peptides as well as their phosphorylation status play a role in binding and may bias the outcome of an inhibition assay. We therefore investigated binding affinities and dynamics of this interaction by testing two N protein constructs and P peptides of different lengths and composition, using nuclear magnetic resonance and fluorescence polarization (FP). We show that, although the last C-terminal Phe241 residue is the main determinant for anchoring P to N, only longer peptides afford sub-micromolar affinity, despite increasing mobility towards the N-terminus. We investigated competitive binding by peptides and small compounds, including molecules used as fluorescent labels in FP. Based on these results, we draw optimized parameters for a robust RSV N-P inhibition assay and validated this assay with the M76 molecule, which displays antiviral properties, for further screening of chemical libraries.


Asunto(s)
Nucleoproteínas , Virus Sincitial Respiratorio Humano , Virus Sincitial Respiratorio Humano/metabolismo , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Polarización de Fluorescencia
3.
Biomaterials ; 302: 122298, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37713762

RESUMEN

The success of mRNA-based vaccines during the Covid-19 pandemic has highlighted the value of this new platform for vaccine development against infectious disease. However, the CD8+ T cell response remains modest with mRNA vaccines, and these do not induce mucosal immunity, which would be needed to prevent viral spread in the healthy population. To address this drawback, we developed a dendritic cell targeting mucosal vaccination vector, the homopentameric STxB. Here, we describe the highly efficient chemical synthesis of the protein, and its in vitro folding. This straightforward preparation led to a synthetic delivery tool whose biophysical and intracellular trafficking characteristics were largely indistinguishable from recombinant STxB. The chemical approach allowed for the generation of new variants with bioorthogonal handles. Selected variants were chemically coupled to several types of antigens derived from the mucosal viruses SARS-CoV-2 and type 16 human papillomavirus. Upon intranasal administration in mice, mucosal immunity, including resident memory CD8+ T cells and IgA antibodies was induced against these antigens. Our study thereby identifies a novel synthetic antigen delivery tool for mucosal vaccination with an unmatched potential to respond to an urgent medical need.


Asunto(s)
Linfocitos T CD8-positivos , Pandemias , Ratones , Humanos , Animales , Vacunación , Vacunas Sintéticas , Antígenos , Anticuerpos Antivirales
4.
Nat Commun ; 6: 7771, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26190377

RESUMEN

External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended ß-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials.


Asunto(s)
Histidina/metabolismo , Estructura Secundaria de Proteína , Pamoato de Triptorelina/metabolismo , Cristalografía por Rayos X , Histidina/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Nanotubos de Péptidos/química , Imagen Óptica , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Pamoato de Triptorelina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA