RESUMEN
Passive surface acoustic wave (SAW) devices are attractive candidates for continuous wireless monitoring of corrosion in large infrastructures. However, acoustic loss in the aqueous medium and limited read range usually create challenges in their widespread use for monitoring large systems such as oil and gas (O&G) pipelines, aircraft, and processing plants. This paper presents the investigation of impedance-loaded reflective delay line (IL-RDL) SAW devices for monitoring metal corrosion under O&G pipeline-relevant conditions. Specifically, we studied the effect of change in resistivity of a reflector on the backscattered signal of an RDL and investigated an optimal range through simulation. This was followed by the experimental demonstrations of real-time monitoring of Fe film corrosion in pressurized (550 psi) humid CO2 conditions. Additionally, remote monitoring of Fe film corrosion in an acidic solution inside a 70 m carbon steel pipe was demonstrated using guided waves. This paper also suggests potential ways to improve the sensing response of IL-RDLs.
RESUMEN
We examine the application of guided waves on a single conductor (Goubau waves) for sensing. In particular, the use of such waves to remotely interrogate surface acoustic wave (SAW) sensors mounted on large-radius conductors (pipes) is considered. Experimental results using a small-radius (0.0032 m) conductor at 435 MHz are reported. The applicability of published theory to conductors of large radius is examined. Finite element simulations are then used to study the propagation and launching of Goubau waves on steel conductors up to 0.254 m in radius. Simulations show that waves can be launched and received, although energy loss into radiating waves is a problem with current launcher designs.
Asunto(s)
Radio (Anatomía) , Sonido , Extremidad SuperiorRESUMEN
Corrosion has been a great concern in the oil and natural gas industry costing billions of dollars annually in the U.S. The ability to monitor corrosion online before structural integrity is compromised can have a significant impact on preventing catastrophic events resulting from corrosion. This article critically reviews conventional corrosion sensors and emerging sensor technologies in terms of sensing principles, sensor designs, advantages, and limitations. Conventional corrosion sensors encompass corrosion coupons, electrical resistance probes, electrochemical sensors, ultrasonic testing sensors, magnetic flux leakage sensors, electromagnetic sensors, and in-line inspection tools. Emerging sensor technologies highlight optical fiber sensors (point, quasi-distributed, distributed) and passive wireless sensors such as passive radio-frequency identification sensors and surface acoustic wave sensors. Emerging sensors show great potential in continuous real-time in-situ monitoring of oil and natural gas infrastructure. Distributed chemical sensing is emphasized based on recent studies as a promising method to detect early corrosion onset and monitor corrosive environments for corrosion mitigation management. Additionally, challenges are discussed including durability and stability in extreme and harsh conditions such as high temperature high pressure in subsurface wellbores.
RESUMEN
Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.
RESUMEN
A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of â¼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.
RESUMEN
A new approach to develop highly ordered magnetite (Fe3O4) nanoparticle-patterned nanohole arrays with desirable magnetic properties for a variety of technological applications is presented. In this work, the sub-100 nm nanohole arrays are successfully fabricated from a pre-ceramic polymer mold using spin-on nanoprinting (SNAP). These nanoholes a then filled with monodispersed, spherical Fe3O4 nanoparticles of about 10 nm diameter using a novel magnetic drag and drop procedure. The nanohole arrays filled with magnetic nanoparticles a imaged using magnetic force microscopy (MFM). Magnetometry and MFM measurements reveal room temperature ferromagnetism in the Fe3O4-filled nanohole arrays, while the as-synthesized Fe3O4 nanoparticles exhibit superparamagnetic behavior. As revealed by MFM measurements, the enhanced magnetism in the Fe3O4-filled nanohole arrays originates mainly from the enhanced magnetic dipole interactions of Fe3 O4 nanoparticles within the nanoholes and between adjacent nanoholes. Nanoparticle filled nanohole arrays can be highly beneficial in magnetic data storage and other applications such as microwave devices and biosensor arrays that require tunable and anisotropic magnetic properties.
RESUMEN
A small DC magnetic field can induce an enormous response in the impedance of a soft magnetic conductor in various forms of wire, ribbon, and thin film. Also known as the giant magnetoimpedance (GMI) effect, this phenomenon forms the basis for the development of high-performance magnetic biosensors with magnetic field sensitivity down to the picoTesla regime at room temperature. Over the past decade, some state-of-the-art prototypes have become available for trial tests due to continuous efforts to improve the sensitivity of GMI biosensors for the ultrasensitive detection of biological entities and biomagnetic field detection of human activities through the use of magnetic nanoparticles as biomarkers. In this review, we highlight recent advances in the development of GMI biosensors and review medical devices for applications in biomedical diagnostics and healthcare monitoring, including real-time monitoring of respiratory motion in COVID-19 patients at various stages. We also discuss exciting research opportunities and existing challenges that will stimulate further study into ultrasensitive magnetic biosensors and healthcare monitors based on the GMI effect.
Asunto(s)
Técnicas Biosensibles , COVID-19 , COVID-19/diagnóstico , Atención a la Salud , Impedancia Eléctrica , Humanos , MagnetismoRESUMEN
The integration of nanoporous materials such as metal organic frameworks (MOFs) with sensitive transducers can result in robust sensing platforms for monitoring gases and chemical vapors for a range of applications. Here, we report on an integration of the zeolitic imidazolate framework - 8 (ZIF-8) MOF with surface acoustic wave (SAW) and thickness shear mode quartz crystal microbalance (QCM) devices to monitor carbon dioxide (CO2) and methane (CH4) under ambient conditions. The MOF was directly coated on the Y-Z LiNbO3 SAW delay lines (operating frequency, f0 = 436 MHz) and AT-cut quartz TSM resonators (resonant frequency, f0 = 9 MHz) and the devices were tested for various gases in N2 under ambient conditions. The devices were able to detect the changes in CO2 or CH4 concentrations with relatively higher sensitivity to CO2, which was due to its higher adsorption potential and heavier molecular weight. The sensors showed full reversibility and repeatability which were attributed to the physisorption of the gases into the MOF and high stability of the devices. Both types of sensors showed linear responses relative to changes in the binary gas compositions thereby allowing to construct calibration curves which correlated well with the expected mass changes in the sorbent layer based on mixed-gas gravimetric adsorption isotherms measured on bulk samples. For 200 nm thick films, the SAW sensitivities to CO2 and CH4 were 1.44 × 10-6/vol% and 8 × 10-8/vol%, respectively, against the QCM sensitivities 0.24 × 10-6/vol% and 1 × 10-8/vol%, respectively, which were evaluated as the fractional change in the signal. The SAW sensors were also evaluated for 100 nm-300 nm thick films, the sensitivities of which were found to increase with the thickness due to the increased number of pores for the adsorption of a larger amount of gases. In addition, the MOF-coated SAW delay lines had a good response in wireless mode, demonstrating their potential to operate remotely for the detection of the gases at emission sites across the energy infrastructure.