Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170418, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38286294

RESUMEN

Conservation-agriculture and organic-farming are two sustainable-agriculture approaches to ensure food security and environmental-sustainability. Hence, a field study assessed the productivity, soil-health and carbon-dynamics of soybean-wheat cropping system (SWCS) under four tillage and residue-management practices (TRMPs) viz., Conventional-tillage without residues (CT-R), conventional-tillage with residue-retention in both crops at 3 t ha-1 each (CT + R), zero-tillage without residues (ZT-R), and zero-tillage with residue-retention in both crops at 3 t ha-1 each (ZT + R); and five organic-nutrient-management-practices (ONMPs) in both crops viz., 100 % RDF (N1), 100 % RDN through FYM (N2), 100 % RDN through VC (N3), 100 % RDN through FYM + Biofertilizers + Cow-urine + Panchgavya + Jeevamrut (N4), and 100 % RDN through VC + Biofertilizers + Cow-urine + Panchgavya + Jeevamrut (N5), in split-plot-design replicated-thrice. Among TRMPs, ZT + R enhanced system-productivity (SEY) by ∼17.2 % over CT-R, besides improved soil available-N, P, K by 6.4, 6.5 and 6.5 %, respectively. SMBC, SMBN and SMBP were higher under ZT + R by 16.2, 21.5 and 10.8 % over CT-R, respectively. ZT + R had higher soil enzyme activities of DHA, Acid-P, ALP, URA, and FDA over CT-R by 19.4, 20.7, 21.5, 20.7 and 15.2 %, respectively. ZT + R also had higher VLC, ACP, LI and CMI over CT-R. Among ONMPs, the natural-farming based ONMP, N5 considerably improved SMBC, SMBN, SMBP, FDA, DHA, Acid-P, URA, and ALP by 12.7-12.9 % over N1 (100 % RDF). ONMP-N5 improved the available-N, P, K content over N1 by 6.6, 5.8 and 6.7 %, respectively. ONMP-N5 had higher (p < 0.05) microbial-count, VLC, APC, LI and CMI; however, system-productivity was ∼4.1 % lower than N1 in this two-years' short-study which further need investigation in multi-location long-term experiments. Overall, the dual-crop basis ZT + R at 6 t ha-1 year-1 + NF-based ONMPs (N5) may harness higher and sustained productivity under SWCS besides advancing soil-health and soil carbon-pools in sandy-loam soils of north-Indian plains and similar soils across south-Asia.

2.
Sci Rep ; 13(1): 1688, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717658

RESUMEN

Delayed sowing of maize hybrids could exacerbate the capability of maximizing the yield potential through poor crop stand, root proliferation, nutrient uptake, and dry matter accumulation coupled with the inadequate partitioning of the assimilates. This study appraised the performance of five recent maize hybrids viz., PMH-1, PJHM-1, AH-4158, AH-4271, and AH-8181 under timely and late sown conditions of the irrigated semi-arid ecologies. Timely sowing had the grain and stover yields advantage of 16-19% and 12-25%, respectively over the late sown maize hybrids. The advanced hybrids AH-4271 and AH-4158 had higher grain yields than the others. During the post-anthesis period, a greater dry matter accumulation and contribution to the grain yield to the tune of 16% and 10.2%, respectively, was observed under timely sown conditions. Furthermore, the nutrient acquisition and use efficiencies also improved under the timely sown. The nutrient and dry matter remobilization varied among the hybrids with AH-4271 and PMH-1 registering greater values. The grain yield stability index (0.85) was highest with AH-4158 apart from the least yield reduction (15.2%) and stress susceptibility index (0.81), while the maximum geometric mean productivity was recorded with the AH-4271 (5.46 Mg ha-1). The hybrids AH-4271 and PJHM-1 exhibited improved root morphological traits, such as root length, biomass, root length density, root volume at the V5 stage (20 days after sowing, DAS) and 50% flowering (53 DAS). It is thus evident that the timely sowing and appropriate hybrids based on stress tolerance indices resulted in greater yields and better utilization of resources.


Asunto(s)
Producción de Cultivos , Zea mays , Grano Comestible , Biomasa
3.
Sci Rep ; 12(1): 14371, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999342

RESUMEN

Indo-Gangetic plains (IGP) of South Asia have supported bulk of human and bovine population in the region since ages, and a spectacular progress has been made in food production. However, malnutrition, diminishing total factor productivity, and natural resource degradation continue to plague this cereal-dominated region, which is also vulnerable to climate change. Addressing these challenges would require a transition towards diversifying cereal rotations with agroecological cropping systems. A study was, therefore, conducted at the experimental farm of ICAR-CSSRI, Karnal on crop diversification and sustainable intensification options using agro-ecological approaches such as Conservation Agriculture (CA) and diversified cropping systems to ensure food and nutritional security while sustaining the natural resources. On 2 years mean basis, CA-based cropping system management scenarios (mean of Sc2-Sc7) using diversified crop rotations; increased the system yield by 15.4%, net return by 28.7%, protein yield by 29.7%, while using 53.0% less irrigation water compared to conventional tillage (CT)-based rice-wheat system (Sc1). Maize-mustard-mungbean on permanent beds (PBs) (Sc4) recorded the highest productivity (+ 40.7%), profitability (+ 60.1%), and saved 81.8% irrigation water compared to Sc1 (11.8 Mg ha-1; 2190 USD ha-1; 2514 mm ha-1). Similarly, Sc5 (maize-wheat-mungbean on PBs) improved productivity (+ 32.2%), profitability (+ 57.4%) and saved irrigation water (75.5%) compared to Sc1. In terms of nutritional value, Sc5 was more balanced than other scenarios, and produced 43.8, 27.5 and 259.8% higher protein, carbohydrate and fat yields, respectively, compared to Sc1 (0.93, 8.55 and 0.14 Mg ha-1). Scenario 5 was able to meet the nutrient demand of 19, 23 and 32 additional persons ha-1 year-1 with respect to protein, carbohydrate and fat, respectively, compared to Sc1. The highest protein water productivity (~ 0.31 kg protein m-3 water) was recorded with CA-based soybean-wheat-mungbean (Sc6) system followed by maize-mustard-mungbean on PBs (Sc4) system (~ 0.29 kg protein m-3) and lowest under Sc1. Integration of short duration legume (mungbean) improved the system productivity by 17.2% and profitability by 32.1%, while triple gains in irrigation water productivity compared to CT-based systems. In western IGP, maize-wheat-mungbean on PBs was found most productive, profitable and nutritionally rich and efficient system compared to other systems. Therefore, diversification of water intensive cereal rotations with inclusion of legumes and CA-based management optimization can be potential option to ensure nutritious food for the dwelling communities and sustainability of natural resources in the region.


Asunto(s)
Agricultura , Productos Agrícolas , Agricultura/métodos , Animales , Carbohidratos , Bovinos , Grano Comestible , Humanos , Triticum , Agua , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA