Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 36(4): 1203-10, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26818508

RESUMEN

We demonstrated previously that Pannexin 1 (Panx1), an ion and metabolite channel, promotes the growth and proliferation of ventricular zone (VZ) neural precursor cells (NPCs) in vitro. To investigate its role in vivo, we used floxed Panx1 mice in combination with viruses to delete Panx1 in VZ NPCs and to track numbers of Panx1-null and Panx1-expressing VZ NPCs over time. Two days after virus injection, Panx1-null cells were less abundant than Panx1-expressing cells, suggesting that Panx1 is required for the maintenance of VZ NPCs. We also investigated the effect of Panx1 deletion in VZ NPCs after focal cortical stroke via photothrombosis. Panx1 is essential for maintaining elevated VZ NPC numbers after stroke. In contrast, Panx1-null NPCs were more abundant than Panx1-expressing NPCs in the peri-infarct cortex. Together, these findings suggest that Panx1 plays an important role in NPC maintenance in the VZ niche in the naive and stroke brain and could be a key target for improving NPC survival in the peri-infarct cortex. SIGNIFICANCE STATEMENT: Here, we demonstrate that Pannexin 1 (Panx1) maintains a consistent population size of neural precursor cells in the ventricular zone, both in the healthy brain and in the context of stroke. In contrast, Panx1 appears to be detrimental to the survival of neural precursor cells that surround damaged cortical tissue in the stroke brain. This suggests that targeting Panx1 in the peri-infarct cortex, in combination with other therapies, could improve cell survival around the injury site.


Asunto(s)
Infarto Cerebral/patología , Ventrículos Cerebrales/citología , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Análisis de Varianza , Animales , Caspasa 3/metabolismo , Recuento de Células , Supervivencia Celular/fisiología , Conexinas/genética , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neuropéptidos/metabolismo , Accidente Cerebrovascular/complicaciones
2.
Hippocampus ; 26(2): 211-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26266948

RESUMEN

In the adult brain only a small proportion of the neural stem and progenitor cells (NPCs) and their progeny survive to become mature neurons in the hippocampus. Recent studies have elucidated the roles for members of the B-cell lymphoma-2 (Bcl-2) family of proteins in regulating the survival of NPCs and their progeny at different stages of maturation, yet the requirement of Bcl-2 during this process remains unknown. Here we report that inducible removal of Bcl-2 from nestin-expressing neural stem/progenitor cells and their progeny resulted in a reduction in the survival of doublecortin-expressing cells in the absence of changing the number of radial-glial stem cells or dividing NPCs. The requirement of Bcl-2 for the survival of maturing NPCs was confirmed by removal of Bcl-2 through infecting NPCs using a retroviral strategy that resulted in the complete loss of Bcl-2 null cells by 30-day post-viral injection. Furthermore, we observed that the function of Bcl-2 in the adult-generated neurons was dependent on the Bcl-2-associated X (BAX) protein, since Bcl-2 null NPCs were rescued in BAX knockout mice. These results indicate that Bcl-2 is an essential regulator in the survival of doublecortin-expressing immature neurons through a mechanism that is upstream of BAX.


Asunto(s)
Proteínas Asociadas a Microtúbulos/biosíntesis , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/deficiencia , Animales , Proteínas de Dominio Doblecortina , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética
3.
Hippocampus ; 26(11): 1379-1392, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27325572

RESUMEN

In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Giro Dentado/citología , Giro Dentado/embriología , Neurogénesis/genética , Neuronas/fisiología , Proteína de Retinoblastoma/metabolismo , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Embrión de Mamíferos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Proteína de Retinoblastoma/genética , Factores de Transcripción SOXB1/metabolismo
4.
Eur J Neurosci ; 33(6): 1025-36, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21395845

RESUMEN

Many laboratories have focused efforts on the creation of transgenic mouse models to study adult neurogenesis. In the last decade several constitutive reporter, as well as inducible transgenic lines have been published that allowed for visualization, tracking and alteration of specific neurogenic cell populations in the adult brain. Given the popularity of this approach, multiple mouse lines are available, and this review summarizes the differences in the basic techniques that have been used to create these mice, highlighting the different constructs and reporter proteins used, as well as the strengths and limitations of each of these models. Representative examples from the literature demonstrate some of the diverse and seminal findings that have come to fruition through the laborious, yet highly rewarding work of creating transgenic mouse lines for adult neurogenesis research.


Asunto(s)
Células Madre Adultas/fisiología , Ratones Transgénicos , Neurogénesis/fisiología , Células Madre Adultas/citología , Animales , Genes Reporteros , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
5.
J Clin Invest ; 129(4): 1536-1550, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30676325

RESUMEN

Poststroke cognitive impairment is considered one of the main complications during the chronic phase of ischemic stroke. In the adult brain, the hippocampus regulates both encoding and retrieval of new information through adult neurogenesis. Nevertheless, the lack of predictive models and studies based on the forgetting processes hinders the understanding of memory alterations after stroke. Our aim was to explore whether poststroke neurogenesis participates in the development of long-term memory impairment. Here, we show a hippocampal neurogenesis burst that persisted 1 month after stroke and that correlated with an impaired contextual and spatial memory performance. Furthermore, we demonstrate that the enhancement of hippocampal neurogenesis after stroke by physical activity or memantine treatment weakened existing memories. More importantly, stroke-induced newborn neurons promoted an aberrant hippocampal circuitry remodeling with differential features at ipsi- and contralesional levels. Strikingly, inhibition of stroke-induced hippocampal neurogenesis by temozolomide treatment or using a genetic approach (Nestin-CreERT2/NSE-DTA mice) impeded the forgetting of old memories. These results suggest that hippocampal neurogenesis modulation could be considered as a potential approach for treatment of poststroke cognitive impairment.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/metabolismo , Neurogénesis/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Temozolomida/farmacología , Animales , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
6.
Stem Cell Reports ; 11(6): 1327-1336, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30416050

RESUMEN

Ischemic stroke enhances the proliferation of adult-generated precursor cells that ectopically migrate toward the infarct. Studies have correlated precursor cell proliferation and subsequent adult neurogenesis with enhanced stroke recovery, yet it remains unclear whether stroke can generate new neurons capable of functional integration into the injured cortex. Here, using single and bitransgenic reporter mice, we identify spatial and temporal features of a multilineage cellular response to focal ischemia. We reveal that a small population of stroke-induced immature neurons accumulate within the peri-infarct region of the adult sensorimotor cortex, exhibit voltage-dependent conductances, fire action potentials, express GABAergic markers, and receive sparse GABAergic synaptic inputs. Collectively, these findings reveal that GABAergic neurons arising from the lateral ventricle have the capacity to integrate into the stroke-injured cortex, although their limited number and exiguous synaptic integration may limit their ability to participate in stroke recovery.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Neuronas GABAérgicas/patología , Accidente Cerebrovascular/fisiopatología , Animales , Biomarcadores/metabolismo , Isquemia Encefálica/patología , Linaje de la Célula , Proteínas de Dominio Doblecortina , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Nestina/metabolismo , Neuropéptidos/metabolismo , Fenotipo , Accidente Cerebrovascular/patología , Sinapsis/metabolismo , Factores de Tiempo
7.
Sci Rep ; 8(1): 17931, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30560948

RESUMEN

Mutations in the presenilin genes (PS1 and PS2) are a major cause of familial-Alzheimer's disease (FAD). Presenilins regulate neurogenesis in the developing brain, with loss of PS1 inducing aberrant premature differentiation of neural progenitor cells, and additional loss of PS2 exacerbating this effect. It is unclear, however, whether presenilins are involved in adult neurogenesis, a process that may be impaired in Alzheimer's disease within the hippocampus. To investigate the requirement of presenilins in adult-generated dentate granule neurons, we examined adult neurogenesis in the PS2-/- adult brain and then employ a retroviral approach to ablate PS1 selectively in dividing progenitor cells of the PS2-/- adult brain. Surprisingly, the in vivo ablation of both presenilins resulted in no defects in the survival and differentiation of adult-generated neurons. There was also no change in the morphology or functional properties of the retroviral-labeled presenilin-null cells, as assessed by dendritic morphology and whole-cell electrophysiology analyses. Furthermore, while FACS analysis showed that stem and progenitor cells express presenilins, inactivation of presenilins from these cells, using a NestinCreERT2 inducible genetic approach, demonstrated no changes in the proliferation, survival, or differentiation of adult-generated cells. Therefore, unlike their significant role in neurogenesis during embryonic development, presenilins are not required for cell-intrinsic regulation of adult hippocampal neurogenesis.


Asunto(s)
Enfermedad de Alzheimer/genética , Hipocampo/citología , Presenilina-1/genética , Presenilina-2/genética , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Ratones , Mutación , Neurogénesis
8.
Brain Plast ; 3(1): 99-110, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29765863

RESUMEN

Within the brain, the physiological and pathological functions of autophagy in development and throughout the lifespan are being elucidated. This review summarizes recent in vitro and in vivo results that are defining the role of autophagy-related genes during the process of adult neurogenesis. We also discuss the need for future experiments to determine the molecular mechanism and functional significance of autophagy in the different neural stem cell populations and throughout the stages of adult neurogenesis.

9.
Front Neurosci ; 9: 494, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793044

RESUMEN

In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA