Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Psychiatry ; 29(4): 929-938, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177349

RESUMEN

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n = 101) from healthy controls (n = 51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n = 97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC = 75.4%, 95% CI = 67.0-83.3%; in non-affective psychosis AUC = 80.5%, 95% CI = 72.1-88.0%, and in affective psychosis AUC = 58.7%, 95% CI = 44.2-72.0%). Test-retest reliability ranged between ICC = 0.48 (95% CI = 0.35-0.59) and ICC = 0.22 (95% CI = 0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC = 0.51 (95% CI = 0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 min, diagnostic classification of the FSA increased from AUC = 71.7% (95% CI = 63.1-80.3%) to 75.4% (95% CI = 67.0-83.3%) and phase encoding direction reliability from ICC = 0.29 (95% CI = 0.14-0.43) to ICC = 0.51 (95% CI = 0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.


Asunto(s)
Biomarcadores , Cuerpo Estriado , Imagen por Resonancia Magnética , Neuroimagen , Trastornos Psicóticos , Esquizofrenia , Humanos , Masculino , Femenino , Trastornos Psicóticos/fisiopatología , Adulto , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/fisiopatología , Neuroimagen/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Conectoma/métodos , Adulto Joven , Adolescente
2.
Hum Brain Mapp ; 44(9): 3541-3554, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37042411

RESUMEN

Functional connectomes (FCs), represented by networks or graphs that summarize coactivation patterns between pairs of brain regions, have been related at a population level to age, sex, cognitive/behavioral scores, life experience, genetics, and disease/disorders. However, quantifying FC differences between individuals also provides a rich source of information with which to map to differences in those individuals' biology, experience, genetics or behavior. In this study, graph matching is used to create a novel inter-individual FC metric, called swap distance, that quantifies the distance between pairs of individuals' partial FCs, with a smaller swap distance indicating the individuals have more similar FC. We apply graph matching to align FCs between individuals from the the Human Connectome Project N = 997 and find that swap distance (i) increases with increasing familial distance, (ii) increases with subjects' ages, (iii) is smaller for pairs of females compared to pairs of males, and (iv) is larger for females with lower cognitive scores compared to females with larger cognitive scores. Regions that contributed most to individuals' swap distances were in higher-order networks, that is, default-mode and fronto-parietal, that underlie executive function and memory. These higher-order networks' regions also had swap frequencies that varied monotonically with familial relatedness of the individuals in question. We posit that the proposed graph matching technique provides a novel way to study inter-subject differences in FC and enables quantification of how FC may vary with age, relatedness, sex, and behavior.


Asunto(s)
Conectoma , Masculino , Femenino , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Función Ejecutiva , Cognición/fisiología
3.
Neuroimage ; 260: 119485, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35843514

RESUMEN

Individual differences in brain anatomy can be used to predict variations in cognitive ability. Most studies to date have focused on broad population-level trends, but the extent to which the observed predictive features are shared across sexes and age groups remains to be established. While it is standard practice to account for intracranial volume (ICV) using proportion correction in both regional and whole-brain morphometric analyses, in the context of brain-behavior predictions the possible differential impact of ICV correction on anatomical features and subgroups within the population has yet to be systematically investigated. In this work, we evaluate the effect of proportional ICV correction on sex-independent and sex-specific predictive models of individual cognitive abilities across multiple anatomical properties (surface area, gray matter volume, and cortical thickness) in healthy young adults (Human Connectome Project; n = 1013, 548 females) and typically developing children (Adolescent Brain Cognitive Development study; n = 1823, 979 females). We demonstrate that ICV correction generally reduces predictive accuracies derived from surface area and gray matter volume, while increasing predictive accuracies based on cortical thickness in both adults and children. Furthermore, the extent to which predictive models generalize across sexes and age groups depends on ICV correction: models based on surface area and gray matter volume are more generalizable without ICV correction, while models based on cortical thickness are more generalizable with ICV correction. Finally, the observed neuroanatomical features predictive of cognitive abilities are unique across age groups regardless of ICV correction, but whether they are shared or unique across sexes (within age groups) depends on ICV correction. These findings highlight the importance of considering individual differences in ICV, and show that proportional ICV correction does not remove the effects of cranial volume from anatomical measurements and can introduce ICV bias where previously there was none. ICV correction choices affect not just the strength of the relationships captured, but also the conclusions drawn regarding the neuroanatomical features that underlie those relationships.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Adolescente , Sesgo , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Niño , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Adulto Joven
4.
Neuroimage ; 263: 119636, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36116616

RESUMEN

A fundamental goal across the neurosciences is the characterization of relationships linking brain anatomy, functioning, and behavior. Although various MRI modalities have been developed to probe these relationships, direct comparisons of their ability to predict behavior have been lacking. Here, we compared the ability of anatomical T1, diffusion and functional MRI (fMRI) to predict behavior at an individual level. Cortical thickness, area and volume were extracted from anatomical T1 images. Diffusion Tensor Imaging (DTI) and approximate Neurite Orientation Dispersion and Density Imaging (NODDI) models were fitted to the diffusion images. The resulting metrics were projected to the Tract-Based Spatial Statistics (TBSS) skeleton. We also ran probabilistic tractography for the diffusion images, from which we extracted the stream count, average stream length, and the average of each DTI and NODDI metric across tracts connecting each pair of brain regions. Functional connectivity (FC) was extracted from both task and resting-state fMRI. Individualized prediction of a wide range of behavioral measures were performed using kernel ridge regression, linear ridge regression and elastic net regression. Consistency of the results were investigated with the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. In both datasets, FC-based models gave the best prediction performance, regardless of regression model or behavioral measure. This was especially true for the cognitive component. Furthermore, all modalities were able to predict cognition better than other behavioral components. Combining all modalities improved prediction of cognition, but not other behavioral components. Finally, across all behaviors, combining resting and task FC yielded prediction performance similar to combining all modalities. Overall, our study suggests that in the case of healthy children and young adults, behaviorally-relevant information in T1 and diffusion features might reflect a subset of the variance captured by FC.


Asunto(s)
Conectoma , Imagen de Difusión Tensora , Adulto Joven , Adolescente , Niño , Humanos , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cognición
5.
Hum Brain Mapp ; 43(3): 1087-1102, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34811849

RESUMEN

A thorough understanding of sex-independent and sex-specific neurobiological features that underlie cognitive abilities in healthy individuals is essential for the study of neurological illnesses in which males and females differentially experience and exhibit cognitive impairment. Here, we evaluate sex-independent and sex-specific relationships between functional connectivity and individual cognitive abilities in 392 healthy young adults (196 males) from the Human Connectome Project. First, we establish that sex-independent models comparably predict crystallised abilities in males and females, but only successfully predict fluid abilities in males. Second, we demonstrate sex-specific models comparably predict crystallised abilities within and between sexes, and generally fail to predict fluid abilities in either sex. Third, we reveal that largely overlapping connections between visual, dorsal attention, ventral attention, and temporal parietal networks are associated with better performance on crystallised and fluid cognitive tests in males and females, while connections within visual, somatomotor, and temporal parietal networks are associated with poorer performance. Together, our findings suggest that shared neurobiological features of the functional connectome underlie crystallised and fluid abilities across the sexes.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Inteligencia/fisiología , Red Nerviosa/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Factores Sexuales , Adulto Joven
6.
Hum Brain Mapp ; 42(10): 3102-3118, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33830577

RESUMEN

White matter pathways between neurons facilitate neuronal coactivation patterns in the brain. Insight into how these structural and functional connections underlie complex cognitive functions provides an important foundation with which to delineate disease-related changes in cognitive functioning. Here, we integrate neuroimaging, connectomics, and machine learning approaches to explore how functional and structural brain connectivity relate to cognition. Specifically, we evaluate the extent to which functional and structural connectivity predict individual crystallised and fluid cognitive abilities in 415 unrelated healthy young adults (202 females) from the Human Connectome Project. We report three main findings. First, we demonstrate functional connectivity is more predictive of cognitive scores than structural connectivity, and, furthermore, integrating the two modalities does not increase explained variance. Second, we show the quality of cognitive prediction from connectome measures is influenced by the choice of grey matter parcellation, and, possibly, how that parcellation is derived. Third, we find that distinct functional and structural connections predict crystallised and fluid abilities. Taken together, our results suggest that functional and structural connectivity have unique relationships with crystallised and fluid cognition and, furthermore, studying both modalities provides a more comprehensive insight into the neural correlates of cognition.


Asunto(s)
Corteza Cerebral , Cognición/fisiología , Conectoma , Inteligencia/fisiología , Red Nerviosa , Adulto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adulto Joven
7.
Hum Brain Mapp ; 41(13): 3567-3579, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32627300

RESUMEN

A thorough understanding of sex differences that exist in the brains of healthy individuals is crucial for the study of neurological illnesses that exhibit phenotypic differences between males and females. Here we evaluate sex differences in regional temporal dependence of resting-state brain activity in 195 adult male-female pairs strictly matched for total grey matter volume from the Human Connectome Project. We find that males have more persistent temporal dependence in regions within temporal, parietal, and occipital cortices. Machine learning algorithms trained on regional temporal dependence measures achieve sex classification accuracies up to 81%. Regions with the strongest feature importance in the sex classification task included cerebellum, amygdala, and frontal and occipital cortices. Secondarily, we show that even after strict matching of total gray matter volume, significant volumetric sex differences persist; males have larger absolute cerebella, hippocampi, parahippocampi, thalami, caudates, and amygdalae while females have larger absolute cingulates, precunei, and frontal and parietal cortices. Sex classification based on regional volume achieves accuracies up to 85%, highlighting the importance of strict volume-matching when studying brain-based sex differences. Differential patterns in regional temporal dependence between the sexes identifies a potential neurobiological substrate or environmental effect underlying sex differences in functional brain activation patterns.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Caracteres Sexuales , Adulto , Femenino , Humanos , Masculino , Adulto Joven
8.
NMR Biomed ; 32(3): e4058, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30663818

RESUMEN

PURPOSE: In vivo magnetic resonance spectroscopy (MRS) is the only technique capable of non-invasively assessing metabolite concentrations in the brain. The lack of alternative methods makes validation of MRS measures challenging. The aim of this study is to assess the validity of MRS measures of human brain metabolite concentrations by comparing multiple MRS measures acquired using different MRS acquisition sequences. METHODS: Single-voxel SPECIAL and MEGA-PRESS MR spectra were acquired from both the dorsolateral prefrontal cortex and primary motor cortices in 15 healthy subjects. The SPECIAL spectrum, as well as both the edit-off and difference spectra of MEGA-PRESS were each analyzed in LCModel to obtain estimates of the absolute concentrations of total choline (TCh; glycerophosphocholine + phosphocholine), total creatine (TCr; creatine + phosphocreatine), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), NAA + NAAG, glutamate (Glu), glutamine (Gln), Glu + Gln, scyllo-inositol (Scyllo), myo-inositol (Ins), glutathione (GSH), γ-aminobutyric acid (GABA), lactate (Lac) and aspartate (Asp). Then, having obtained up to three independent measures of each metabolite per brain region per subject, correlations between the different measures were assessed. RESULTS: The degree of correlation between measures varied greatly across both the metabolites and sequences tested. As expected, metabolites with the most prominent spectral peaks (TCh, TCr, NAA + NAAG, Ins and Glu) had the most well-correlated measures between methods, while metabolites with less prominent spectral peaks (Lac, Gln, GABA, Asp, and NAAG) tended to have poorly-correlated measures between methods. Some metabolites with relatively less prominent spectral peaks (GSH, Scyllo) had fairly well-correlated measures between some methods. Combining metabolites improved the agreement between methods for measures of NAA + NAAG, but not for Glu + Gln. CONCLUSIONS: Given that the ground truth for in vivo MRS measures is never known, the method proposed here provides a promising means to assess the validity of in vivo MRS measures, which has not yet been explored widely.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética , Metaboloma , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Dipéptidos/metabolismo , Femenino , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Humanos , Masculino , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
9.
Sci Adv ; 10(28): eadn4202, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996031

RESUMEN

Sex and gender are associated with human behavior throughout the life span and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Somatomotor, visual, control, and limbic networks are preferentially associated with sex, while network correlates of gender are more distributed throughout the cortex. These results suggest that sex and gender are irreducible to one another not only in society but also in biology.


Asunto(s)
Encéfalo , Red Nerviosa , Humanos , Masculino , Femenino , Niño , Encéfalo/fisiología , Red Nerviosa/fisiología , Caracteres Sexuales , Imagen por Resonancia Magnética , Adolescente , Mapeo Encefálico , Factores Sexuales , Vías Nerviosas/fisiología
10.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712263

RESUMEN

Psychotic-like experiences (PLEs) include a range of sub-threshold symptoms that resemble aspects of psychosis but do not necessarily indicate the presence of psychiatric illness. These experiences are highly prevalent in youth and are associated with developmental disruptions across social, academic, and emotional domains. While not all youth who report PLEs develop psychosis, many develop other psychiatric illnesses during adolescence and adulthood. As such, PLEs are theorized to represent early markers of poor mental health. Here, we characterized the similarities and differences in the neurobiological underpinnings of childhood PLEs across the sexes using a large sample from the ABCD Study (n=5,260), revealing sex-specific associations between functional networks connectivity and PLEs. We find that although the networks associated with PLEs overlap to some extent across the sexes, there are also crucial differences. In females, PLEs are associated with dispersed cortical and non-cortical connections, whereas in males, they are primarily associated with functional connections within limbic, temporal parietal, somato/motor, and visual networks. These results suggest that early transdiagnostic markers of psychopathology may be distinct across the sexes, further emphasizing the need to consider sex in psychiatric research as well as clinical practice.

11.
Biol Psychiatry ; 93(8): 717-728, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36577634

RESUMEN

Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.


Asunto(s)
Aprendizaje Automático , Psiquiatría , Neuroimagen/métodos , Medicina de Precisión , Psiquiatría/métodos , Encéfalo/diagnóstico por imagen
12.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38013996

RESUMEN

Sex and gender are associated with human behavior throughout the lifespan and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Unimodal networks are more strongly associated with sex while heteromodal networks are more strongly associated with gender. These results suggest sex and gender are irreducible to one another not only in society but also in biology.

13.
bioRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461642

RESUMEN

The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.

14.
bioRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045392

RESUMEN

Background: The biological mechanisms that contribute to cocaine and other substance use disorders involve an array of cortical and subcortical systems. Prior work on the development and maintenance of substance use has largely focused on cortico-striatal circuits, with relatively less attention on alterations within and across large-scale functional brain networks, and associated aspects of the dopamine system. The brain-wide pattern of temporal co-activation between distinct brain regions, referred to as the functional connectome, underpins individual differences in behavior. Critically, the functional connectome correlates of substance use and their specificity to dopamine receptor densities relative to other metabotropic receptors classes remains to be established. Methods: We comprehensively characterized brain-wide differences in functional connectivity across multiple scales, including individual connections, regions, and networks in participants with cocaine use disorder (CUD; n=69) and healthy matched controls (n=62), Further, we studied the relationship between the observed functional connectivity signatures of CUD and the spatial distribution of a broad range of normative neurotransmitter receptor and transporter bindings as assessed through 18 different normative positron emission tomography (PET) maps. Results: Our analyses identified a widespread profile of functional connectivity differences between individuals with CUD and matched healthy comparison participants (8.8% of total edges; 8,185 edges; pFWE=0.025). We largely find lower connectivity preferentially linking default network and subcortical regions, and higher within-network connectivity in the default network in participants with CUD. Furthermore, we find consistent and replicable associations between signatures of CUD and normative spatial density of dopamine D2/3 receptors. Conclusions: Our analyses revealed a widespread profile of altered connectivity in individuals with CUD that extends across the functional connectome and implicates multiple circuits. This profile is robustly coupled with normative dopamine D2/3 receptors densities. Underscoring the translational potential of connectomic approaches for the study of in vivo brain functions, CUD-linked aspects of brain function were spatially coupled to disorder relevant neurotransmitter systems.

15.
bioRxiv ; 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292775

RESUMEN

Internalizing and externalizing traits are two distinct classes of behaviors in psychiatry. However, whether shared or unique brain network features predict internalizing and externalizing behaviors in children and adults remain poorly understood. Using a sample of 2262 children from the Adolescent Brain Cognitive Development (ABCD) study and 752 adults from the Human Connectome Project (HCP), we show that network features predicting internalizing and externalizing behavior are, at least in part, dissociable in children, but not in adults. In ABCD children, traits within internalizing and externalizing behavioral categories are predicted by more similar network features concatenated across task and resting states than those between different categories. We did not observe this pattern in HCP adults. Distinct network features predict internalizing and externalizing behaviors in ABCD children and HCP adults. These data reveal shared and unique brain network features accounting for individual variation within broad internalizing and externalizing categories across developmental stages.

16.
Res Sq ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609149

RESUMEN

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n=101) from healthy controls (n=51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n=97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC=75.4%, 95%CI=67.0%-83.3%; in non-affective psychosis AUC=80.5%, 95%CI=72.1-88.0%, and in affective psychosis AUC=58.7%, 95%CI=44.2-72.0%). Test-retest reliability ranged between ICC=0.48 (95%CI=0.35-0.59) and ICC=0.22 (95%CI=0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC=0.51 (95%CI=0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 minutes, diagnostic classification of the FSA increased from AUC=71.7% (95%CI=63.1%-80.3%) to 75.4% (95%CI=67.0%-83.3%) and phase encoding direction reliability from ICC=0.29 (95%CI=0.14-0.43) to ICC=0.51 (95%CI=0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.

17.
medRxiv ; 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37503088

RESUMEN

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n=101) from healthy controls (n=51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n=97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC=75.4%, 95%CI=67.0%-83.3%; in non-affective psychosis AUC=80.5%, 95%CI=72.1-88.0%, and in affective psychosis AUC=58.7%, 95%CI=44.2-72.0%). Test-retest reliability ranged between ICC=0.48 (95%CI=0.35-0.59) and ICC=0.22 (95%CI=0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC=0.51 (95%CI=0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 minutes, diagnostic classification of the FSA increased from AUC=71.7% (95%CI=63.1%-80.3%) to 75.4% (95%CI=67.0%-83.3%) and phase encoding direction reliability from ICC=0.29 (95%CI=0.14-0.43) to ICC=0.51 (95%CI=0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.

18.
Biol Psychiatry ; 94(6): 479-491, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37031778

RESUMEN

BACKGROUND: Individual differences in functional brain connectivity can be used to predict both the presence of psychiatric illness and variability in associated behaviors. However, despite evidence for sex differences in functional network connectivity and in the prevalence, presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant aspects of network connectivity are shared or unique across the sexes remains to be determined. METHODS: In this work, we used predictive modeling approaches to evaluate whether shared or unique functional connectivity correlates underlie the expression of psychiatric illness-linked behaviors in males and females in data from the Adolescent Brain Cognitive Development Study (N = 5260; 2571 females). RESULTS: We demonstrate that functional connectivity profiles predict individual differences in externalizing behaviors in males and females but predict internalizing behaviors only in females. Furthermore, models trained to predict externalizing behaviors in males generalize to predict internalizing behaviors in females, and models trained to predict internalizing behaviors in females generalize to predict externalizing behaviors in males. Finally, the neurobiological correlates of many behaviors are largely shared within and across sexes: functional connections within and between heteromodal association networks, including default, limbic, control, and dorsal attention networks, are associated with internalizing and externalizing behaviors. CONCLUSIONS: Taken together, these findings suggest that shared neurobiological patterns may manifest as distinct behaviors across the sexes. Based on these results, we recommend that both clinicians and researchers carefully consider how sex may influence the presentation of psychiatric illnesses, especially those along the internalizing-externalizing spectrum.


Asunto(s)
Trastornos Mentales , Adolescente , Humanos , Masculino , Femenino , Trastornos Mentales/epidemiología , Encéfalo , Cognición , Caracteres Sexuales , Conducta de Enfermedad , Imagen por Resonancia Magnética/métodos
19.
J Affect Disord ; 281: 303-311, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33341013

RESUMEN

BACKGROUND: Many subjects with major depression (MDD) exhibit subthreshold mania symptoms (MDD+). This study investigated, for the first time, using emotional inhibition tasks, whether the neural organization of MDD+ subjects is more similar to bipolar depression (BDD) or to MDD subjects without subthreshold bipolar symptoms (MDD-). METHOD: This study included 118 medication-free young adults (15 - 30 yrs.): 20 BDD, 28 MDD+, 41 MDD- and 29 HC subjects. Participants underwent fMRI during emotional and non-emotional Go/No-go tasks during which they responded for Go stimuli and inhibited response for happy, fear, and non-emotional (gender) faces No-go stimuli. Univariate linear mixed-effects (LME) analysis for group effects and multivariate Gaussian Process Classifier (GPC) analyses were conducted. RESULTS: MDD- group compared to both the BDD and MDD+ groups, exhibited significantly lower activation in parietal, temporal and frontal regions (cluster-wise corrected p <0.05) for emotional inhibition conditions vs. non-emotional condition. GPC classification of emotional (happy + fear) vs. non-emotional response-inhibition activation pattern showed good discrimination between BDD and MDD- subjects (AUC: 0.70; balanced accuracy: 70% (corrected p = 0.018)) as well as between MDD+ and MDD- subjects (AUC: 0.72; balanced accuracy: 67% (corrected p = 0.045)) but less efficient discrimination between BDD and MDD+ groups (AUC: 0.68; balanced accuracy: 61% (corrected p = 0.273)). Notably, classification of the MDD- group was weighted for left amygdala activation pattern. LIMITATIONS: Results also need to be tested in a different independent dataset. CONCLUSION: Using an fMRI emotional Go-Nogo task, MDD- subjects can be discriminated from BDD and MDD+ subjects.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastorno Bipolar/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Emociones , Expresión Facial , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA