Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 23(41): 9897-9907, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28498558

RESUMEN

1,1,4,4-Tetramethyl-2-tetrazene (TMTZ) is considered as a prospective replacement for toxic hydrazines used in liquid rocket propulsion. The heat of formation of TMTZ was computed and measured, giving values well above those of the hydrazines commonly used in propulsion. This led to a predicted maximum Isp of 337 s for TMTZ/N2 O4 mixtures, which is a value comparable to that of monomethylhydrazine. We found that TMTZ has a vapor pressure well below that of liquid hydrazines, and it is far less toxic. Finally, an improved synthesis is proposed, which is compatible with existing industrial production facilities after minor changes. TMTZ is thus an attractive liquid propellant candidate, with a performance comparable to hydrazines but a lower vapor pressure and toxicity.

2.
Chem Asian J ; 15(24): 4347-4357, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33155765

RESUMEN

Functionalized hydrazines and bishydrazines are interesting straightforward precursors for accessing higher nitrogenated compounds. They offer structural diversity and promising energetic properties as well, namely for propulsion applications. A novel and scalable synthesis has been developed for a new family of bishydrazines, starting from monomethylhydrazine (MMH). This solvent-free route represents a suitable alternative to the one described in the literature. It was extended to design a new family of unsymmetrical hydrazines bearing various functional groups. A selected series of promising compounds, densified with nitrogenated groups (amino, hydrazino or azido functions), was identified as a class of plausible candidates for liquid propulsion. Indeed, the energetic interest of such hydrazines was demonstrated by computing their heats of formation and specific impulse values in bipropellant systems. This led to theoretical energetic performances comparable to that of the MMH/N2 O4 system already in use today.

3.
Toxicol In Vitro ; 52: 70-86, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29885439

RESUMEN

Hydrazine-based liquid propellants are routinely used for space rocket propulsion, in particular monomethylhydrazine (MMH), although such compounds are highly hazardous. For several years, great efforts were devoted to developing a less hazardous molecule. To explore the toxicological effects of an alternative compound, namely (E)-1,1,4,4-tetramethyl-2-tetrazene (TMTZ), we exposed various cellular animal and human models to this compound and to the reference compound MMH. We observed no cytotoxic effects following exposure to TMTZ in animal, as well as human models. However, although the three animal models were unaffected by MMH, exposure of the human hepatic HepaRG cell model revealed that apoptotic cytotoxic effects were only detectable in proliferative human hepatic HepaRG cells and not in differentiated cells, although major biochemical modifications were uncovered in the latter. The present findings indicate that the metabolic mechanisms of MMH toxicity is close to those described for hydrazine with numerous biochemical alterations induced by mitochondrial disruption, production of radical species, and aminotransferase inhibition. The alternative TMTZ molecule had little impact on cellular viability and proliferation of rodent and human dermic and hepatic cell models. TMTZ did not produce any metabolomic effects and appears to be a promising putative industrial alternative to MMH.


Asunto(s)
Propelentes de Aerosoles/toxicidad , Compuestos Azo/toxicidad , Monometilhidrazina/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cricetulus , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Metabolómica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA