Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 97: 103668, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32106040

RESUMEN

Benzodiazepines (BZDs) represent a diverse class of bicyclic heterocyclic molecules. In the last few years, benzodiazepines have emerged as potential therapeutic agents. As a result, several mild, efficient and high yielding protocols have been developed that offer access to various functionalized benzodiazepines (BZDs). They are known to possess a wide array of biological activities such as anxiolytic, anticancer, anticonvulsant, antipsychotics, muscle relaxant, anti-tuberculosis, and antimicrobial activities. The fascinating spectrum of biological activities exhibited by BZDs in various fields has prompted the medicinal chemist to design and discover novel benzodiazepine-based analogs as potential therapeutic candidates with the desired biological profile. In this review, an attempt has been made by to summarize (1) Recent advances in the synthetic chemistry of benzodiazepines which enable their synthesis with desired substitution pattern; (2) Medicinal chemistry of BZDs as therapeutic candidates with promising biological profile including insight of mechanistic studies; (3) The correlation of biological data with the structure i.e. structure-activity relationship studies were also included to provide an insight into the rational design of more active agents.


Asunto(s)
Benzodiazepinas/síntesis química , Benzodiazepinas/farmacología , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Benzodiazepinas/química , Técnicas de Química Sintética/métodos , Química Farmacéutica , Humanos , Relación Estructura-Actividad
2.
Bioorg Chem ; 92: 103291, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31561107

RESUMEN

In the modern scenario, the quinolone scaffold has emerged as a very potent motif considering its clinical significance. Quinolones possess wide range of pharmacological activities such as anticancer, antibacterial, antifungal, antiprotozoal, antiviral, anti-inflammatory, carbonic anhydrase inhibitory and diuretic activity etc. The versatile synthetic approaches have been successfully applied and several of the resulted synthesized compounds exhibit fascinating biological activities in numerous fields. This has prompted to discover quinolone-based analogues among the researchers due to its great diversity in biological activities. In the past few years, various new, efficient and convenient synthetic approaches (including green chemistry and microwave-assisted synthesis) have been designed and developed to synthesize diverse quinolone-based scaffolds which represent a growing area of interest in academic and industry as well as to explore their biological activities. In this review, an attempt has been made by the authors to summarize (1) One of the most comprehensive listings of quinolone-based drugs or agents in the market or under various stages of clinical development; (2) Recent advances in the synthetic strategies for quinolone derivatives as well as their biological implications including insight of mechanistic studies. (3) Further, the biological data is correlated with structure-activity relationship studies to provide an insight into the rational design of more active agents.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Quinolonas/farmacología , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Humanos , Estructura Molecular , Quinolonas/síntesis química , Quinolonas/química
3.
J Biomol Struct Dyn ; : 1-23, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315459

RESUMEN

A series of new 2,5-disubstituted arylidene derivatives of thiazolidinedione (16a-e, 17a-d, 18a-c) designed using molecular hybridization approach were synthesized, structurally characterized, and explored for their anti-obesity potential via inhibition of Pancreatic Lipase (PL). Compound 18a presented the most potent PL inhibitory activity with IC50 = 2.71 ± 0.31 µM, as compared to the standard drug, Orlistat (IC50 = 0.99 µM). Kinetic study revealed reversible competitive mode of enzyme inhibition by compound 18a with an inhibitory constant value of 1.19 µM. The most promising compound 18a revealed satisfactory binding mode within the active site of the target protein (human PL, PDB ID: 1LPB). Also, MM/PBSA binding free energy and molecular dynamics (MD) simulation analysis were performed for the most promising compound 18a, which showed potent inhibition according to the results of in vitro studies. Furthermore, a stable conformation of the 1LPB-ligand suggested the stability of this compound in the dynamic environment. The ADME and toxicity analysis of the compounds were examined using web-based online platforms. Results of in vivo studies confirmed the anti-obesity efficacy of compound 18a, wherein oral treatment with compound 18a (30 mg/kg) resulted in a significant reduction in the body weight, BMI, Lee index, feed intake (in Kcal), body fat depots and serum triglycerides. Compound 18a significantly decreased the levels of serum total cholesterol (TC) to 128.6 ± 0.59 mg/dl and serum total triglycerides (TG) to 95.73 ± 0.67 mg/dl as compared to the HFD control group. The present study identified disubstituted TZD derivatives as a new promising class of anti-obesity agents.Communicated by Ramaswamy H. Sarma.

4.
Nano Lett ; 11(8): 3123-7, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21749100

RESUMEN

Water flow over carbon nanotubes has been shown to generate an induced voltage in the flow direction due to coupling of ions present in water with free charge carriers in the nanotubes. However, the induced voltages are typically of the order of a few millivolts, too small for significant power generation. Here we perform tests involving water flow with various molarities of hydrochloric acid (HCl) over few-layered graphene and report order of magnitude higher induced voltages for graphene as compared to nanotubes. The power generated by the flow of ∼0.6 M HCl solution at ∼0.01 m/sec was measured to be ∼85 nW for a ∼30 × 16 µm size graphene film, which equates to a power per unit area of ∼175 W/m(2). Molecular dynamics simulations indicate that the power generation is primarily caused by a net drift velocity of adsorbed Cl(-) ions on the continuous graphene film surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA