Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chromosome Res ; 31(2): 15, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058263

RESUMEN

Chromosomal instability (CIN) is a pervasive feature of human cancers involved in tumor initiation and progression and which is found elevated in metastatic stages. CIN can provide survival and adaptation advantages to human cancers. However, too much of a good thing may come at a high cost for tumor cells as excessive degree of CIN-induced chromosomal aberrations can be detrimental for cancer cell survival and proliferation. Thus, aggressive tumors adapt to cope with ongoing CIN and most likely develop unique susceptibilities that can be their Achilles' heel. Determining the differences between the tumor-promoting and tumor-suppressing effects of CIN at the molecular level has become one of the most exciting and challenging aspects in cancer biology. In this review, we summarized the state of knowledge regarding the mechanisms reported to contribute to the adaptation and perpetuation of aggressive tumor cells carrying CIN. The use of genomics, molecular biology, and imaging techniques is significantly enhancing the understanding of the intricate mechanisms involved in the generation of and adaptation to CIN in experimental models and patients, which were not possible to observe decades ago. The current and future research opportunities provided by these advanced techniques will facilitate the repositioning of CIN exploitation as a feasible therapeutic opportunity and valuable biomarker for several types of human cancers.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Inestabilidad Cromosómica , Aberraciones Cromosómicas , Genómica , Biomarcadores , Inestabilidad Genómica
2.
Cell Rep Med ; 4(2): 100937, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787737

RESUMEN

Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Inestabilidad Cromosómica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética
3.
Biochim Biophys Acta Gen Subj ; 1864(5): 129547, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032657

RESUMEN

BACKGROUND: Lignin, the second most abundant biopolymer on earth, plays a major structural role in plants, conferring mechanical strength and regulating water conduction. Understanding the three-dimensional structure of lignin is important for fundamental reasons as well as engineering plants towards lignin valorization. Lignin lacks a specific primary sequence, making its average chemical composition the focus of most recent studies. However, it remains unclear whether the 3D structure of lignin molecules depends on their sequence. METHODS: We performed all-atom molecular dynamics simulation of three S/G-lignin molecules with the same average composition but different sequence. RESULTS: A detailed statistical analysis of the radius of gyration and relative shape anisotropy reveals that the lignin sequence has no statistically significant effect on the global three-dimensional structure. We found however, that homopolymers of C-lignin with the same molecular weight have smaller radii of gyration than S/G-lignin. We attribute this to lower hydroxyl content of C-lignin, which makes it more compact and rigid. CONCLUSIONS: The 3D structure of lignin is influenced by the overall content of monomeric units and interunit linkages and not by its precise primary sequence. GENERAL SIGNIFICANCE: Lignin is assumed to not have a well-defined primary structure. The results presented here demonstrate there are no significant differences in the global 3D structure of lignin molecules with the same average composition but different primary sequence.


Asunto(s)
Pared Celular/química , Lignina/química , Plantas/química , Conformación Molecular , Simulación de Dinámica Molecular
4.
Structure ; 27(8): 1190-1191, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390544

RESUMEN

The origin of protein backbone threading through a topological knot remains elusive. To understand the evolutionary origin of protein knots, in this issue of StructureKo et al. (2019) used circular permutation to untie a knotted protein. They showed that a domain-swapped dimer releases the knot and the associated high-energy state for substrate binding.


Asunto(s)
Pliegue de Proteína , ARN , Metiltransferasas , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA