Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 298(10): 102423, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030824

RESUMEN

Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.


Asunto(s)
Proteostasis , Receptores de GABA-A , Animales , Ratones , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteómica , Receptores de GABA-A/metabolismo
2.
J Biol Chem ; 291(18): 9526-39, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26945068

RESUMEN

Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteolisis , Receptores de GABA-A/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sustitución de Aminoácidos , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Mutación Missense , Receptores de GABA-A/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/fisiología
3.
J Biol Chem ; 290(1): 325-37, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25406314

RESUMEN

GABAA receptors are the primary inhibitory ion channels in the mammalian central nervous system. The A322D mutation in the α1 subunit results in its excessive endoplasmic reticulum-associated degradation at the expense of plasma membrane trafficking, leading to autosomal dominant juvenile myoclonic epilepsy. Presumably, valosin-containing protein (VCP)/p97 extracts misfolded subunits from the endoplasmic reticulum membrane to the cytosolic proteasome for degradation. Here we showed that inhibiting VCP using Eeyarestatin I reduces the endoplasmic reticulum-associated degradation of the α1(A322D) subunit without an apparent effect on its dynamin-1 dependent endocytosis and that this treatment enhances its trafficking. Furthermore, coapplication of Eeyarestatin I and suberanilohydroxamic acid, a known small molecule that promotes chaperone-assisted folding, yields an additive restoration of surface expression of α1(A322D) subunits in HEK293 cells and neuronal SH-SY5Y cells. Consequently, this combination significantly increases GABA-induced chloride currents in whole-cell patch clamping experiments than either chemical compound alone in HEK293 cells. Our findings suggest that VCP inhibition without stress induction, together with folding enhancement, represents a new strategy to restore proteostasis of misfolding-prone GABAA receptors and, therefore, a potential remedy for idiopathic epilepsy.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Hidrazonas/farmacología , Ácidos Hidroxámicos/farmacología , Hidroxiurea/análogos & derivados , Receptores de GABA-A/química , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adolescente , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cloruros/metabolismo , Sinergismo Farmacológico , Dinamina I/genética , Dinamina I/metabolismo , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Células HEK293 , Humanos , Hidroxiurea/farmacología , Epilepsia Mioclónica Juvenil/genética , Epilepsia Mioclónica Juvenil/metabolismo , Epilepsia Mioclónica Juvenil/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Técnicas de Placa-Clamp , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transducción de Señal , Proteína que Contiene Valosina , Vorinostat , Ácido gamma-Aminobutírico/metabolismo
4.
Pharmacol Res ; 83: 3-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24747662

RESUMEN

Normal organismal physiology depends on the maintenance of proteostasis in each cellular compartment to achieve a delicate balance between protein synthesis, folding, trafficking, and degradation while minimizing misfolding and aggregation. Defective proteostasis leads to numerous protein misfolding diseases. Pharmacological chaperones are cell-permeant small molecules that promote the proper folding and trafficking of a protein via direct binding to that protein. They stabilize their target protein in a protein-pharmacological chaperone state, increasing the natively folded protein population that can effectively engage trafficking machinery for transport to the final destination for function. Here, as regards the application of pharmacological chaperones, we focus on their capability to promote the folding and trafficking of lysosomal enzymes, G protein coupled receptors (GPCRs), and ion channels, each of which is presently an important drug target. Pharmacological chaperones hold great promise as potential therapeutics to ameliorate a variety of protein misfolding diseases.


Asunto(s)
Descubrimiento de Drogas , Canales Iónicos/metabolismo , Lisosomas/enzimología , Pliegue de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Canales Iónicos/química , Lisosomas/efectos de los fármacos , Lisosomas/patología , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Receptores Acoplados a Proteínas G/química
5.
Elife ; 132024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963323

RESUMEN

Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.


Asunto(s)
Retículo Endoplásmico , Receptores de GABA-A , Humanos , Células HEK293 , Retículo Endoplásmico/metabolismo , Animales , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Ratas , Chaperón BiP del Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
6.
Cell Chem Biol ; 28(1): 46-59.e7, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32888501

RESUMEN

Proteostasis deficiency in mutated ion channels leads to a variety of ion channel diseases that are caused by excessive endoplasmic reticulum-associated degradation (ERAD) and inefficient membrane trafficking. We investigated proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors, the primary mediators of neuronal inhibition in the mammalian central nervous system. We screened a structurally diverse, Food and Drug Administration-approved drug library and identified dinoprost (DNP) and dihydroergocristine (DHEC) as highly efficacious enhancers of surface expression of four epilepsy-causing trafficking-deficient mutant receptors. Furthermore, DNP and DHEC restore whole-cell and synaptic currents by incorporating mutated subunits into functional receptors. Mechanistic studies revealed that both drugs reduce subunit degradation by attenuating the Grp94/Hrd1/Sel1L/VCP-mediated ERAD pathway and enhance the subunit folding by promoting subunit interactions with major GABAA receptors-interacting chaperones, BiP and calnexin. In summary, we report that DNP and DHEC remodel the endoplasmic reticulum proteostasis network to restore the functional surface expression of mutant GABAA receptors.


Asunto(s)
Dihidroergocristina/farmacología , Dinoprost/farmacología , Epilepsia/tratamiento farmacológico , Proteostasis/efectos de los fármacos , Receptores de GABA-A/metabolismo , Línea Celular , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Epilepsia/metabolismo , Femenino , Humanos , Masculino , Receptores de GABA-A/genética
7.
PLoS One ; 13(11): e0207948, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30481215

RESUMEN

Biogenesis of membrane proteins is controlled by the protein homeostasis (proteostasis) network. We have been focusing on protein quality control of γ-aminobutyric acid type A (GABAA) receptors, the major inhibitory neurotransmitter-gated ion channels in mammalian central nervous system. Proteostasis deficiency in GABAA receptors causes loss of their surface expression and thus function on the plasma membrane, leading to epilepsy and other neurological diseases. One well-characterized example is the A322D mutation in the α1 subunit that causes its extensive misfolding and expedited degradation in the endoplasmic reticulum (ER), resulting in autosomal dominant juvenile myoclonic epilepsy. We aimed to correct misfolding of the α1(A322D) subunits in the ER as an approach to restore their functional surface expression. Here, we showed that application of BIX, a specific, potent ER resident HSP70 family protein BiP activator, significantly increases the surface expression of the mutant receptors in human HEK293T cells and neuronal SH-SY5Y cells. BIX attenuates the degradation of α1(A322D) and enhances their forward trafficking and function. Furthermore, because BiP is one major target of the two unfolded protein response (UPR) pathways: ATF6 and IRE1, we continued to demonstrate that modest activations of the ATF6 pathway and IRE1 pathway genetically enhance the plasma membrane trafficking of the α1(A322D) protein in HEK293T cells. Our results underlie the potential of regulating the ER proteostasis network to correct loss-of-function protein conformational diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteostasis , Receptores de GABA-A/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Conformación Proteica , Transporte de Proteínas/efectos de los fármacos , Proteostasis/efectos de los fármacos , Receptores de GABA-A/genética , Tiocianatos/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
8.
Cell Rep ; 21(10): 2895-2910, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212034

RESUMEN

GADD34, a stress-induced regulatory subunit of the phosphatase PP1, is known to function in hyperosmotic stress through its well-known role in the integrated stress response (ISR) pathway. Adaptation to hyperosmotic stress is important for the health of corneal epithelial cells exposed to changes in extracellular osmolarity, with maladaptation leading to dry eye syndrome. This adaptation includes induction of SNAT2, an endoplasmic reticulum (ER)-Golgi-processed protein, which helps to reverse the stress-induced loss of cell volume and promote homeostasis through amino acid uptake. Here, we show that GADD34 promotes the processing of proteins synthesized on the ER during hyperosmotic stress independent of its action in the ISR. We show that GADD34/PP1 phosphatase activity reverses hyperosmotic-stress-induced Golgi fragmentation and is important for cis- to trans-Golgi trafficking of SNAT2, thereby promoting SNAT2 plasma membrane localization and function. These results suggest that GADD34 is a protective molecule for ocular diseases such as dry eye syndrome.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Proteína Fosfatasa 1/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Aminoácidos/metabolismo , Western Blotting , Humanos , Ósmosis/fisiología , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Chem Biol ; 20(12): 1456-68, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24211135

RESUMEN

GABA(A) receptors are the primary inhibitory ion channels in the mammalian central nervous system. The A322D mutation in the α1 subunit of GABA(A) receptors is known to result in its degradation and reduce its cell surface expression, leading to loss of GABAA receptor function in autosomal dominant juvenile myoclonic epilepsy. Here, we show that SAHA, a FDA-approved drug, increases the transcription of the α1(A322D) subunit, enhances its folding and trafficking posttranslationally, increases its cell surface level, and restores the GABA-induced maximal current in HEK293 cells expressing α1(A322D)ß2γ2 receptors to 10% of that for wild-type receptors. To enhance the trafficking efficiency of the α1(A322D) subunit, SAHA increases the BiP protein level and the interaction between the α1(A322D) subunit and calnexin. SAHA is a drug that enhances epilepsy-associated GABAA receptor proteostasis.


Asunto(s)
Epilepsia/genética , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Calnexina/metabolismo , Células HEK293 , Humanos , Mutación Puntual , Pliegue de Proteína/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de GABA-A/química , Vorinostat , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA