Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850591

RESUMEN

Remote robotic systems are employed in the CERN accelerator complex to perform different tasks, such as the safe handling of cables and their connectors. Without dedicated control, these kinds of actions are difficult and require the operators' intervention, which is subjected to dangerous external agents. In this paper, two novel modules of the CERNTAURO framework are presented to provide a safe and usable solution for managing optical fibres and their connectors. The first module is used to detect touch and slippage, while the second one is used to regulate the grasping force and contrast slippage. The force reference was obtained with a combination of object recognition and a look-up table method. The proposed strategy was validated with tests in the CERN laboratory, and the preliminary experimental results demonstrated statistically significant increases in time-based efficiency and in the overall relative efficiency of the tasks.

2.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37300071

RESUMEN

Robotic handling of objects is not always a trivial assignment, even in teleoperation where, in most cases, this might lead to stressful labor for operators. To reduce the task difficulty, supervised motions could be performed in safe scenarios to reduce the workload in these non-critical steps by using machine learning and computer vision techniques. This paper describes a novel grasping strategy based on a groundbreaking geometrical analysis which extracts diametrically opposite points taking into account surface smoothing (even those target objects that might conform highly complex shapes) to guarantee the uniformity of the grasping. It uses a monocular camera, as we are often facing space restrictions that generate the need to use laparoscopic cameras integrated in the tools, to recognize and isolate targets from the background, estimating their spatial coordinates and providing the best possible stable grasping points for both feature and featureless objects. It copes with reflections and shadows produced by light sources (which require extra effort to extract their geometrical properties) in unstructured facilities such as nuclear power plants or particle accelerators on scientific equipment. Based on the experimental results, utilizing a specialized dataset improved the detection of metallic objects in low-contrast environments, resulting in the successful application of the algorithm with error rates in the scale of millimeters in the majority of repeatability and accuracy tests.


Asunto(s)
Robótica , Robótica/métodos , Algoritmos , Fuerza de la Mano
3.
Sensors (Basel) ; 21(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208216

RESUMEN

Tunnel structural health inspections are predominantly done through periodic visual observations, requiring humans to be physically present on-site, possibly exposing them to hazardous environments. These surveys are subjective (relying on the surveyor experience), time-consuming, and may demand operation shutdown. These issues can be mitigated through accurate automatic monitoring and inspection systems. In this work, we propose a remotely operated machine vision change detection application to improve the structural health monitoring of tunnels. The vision-based sensing system acquires the data from a rig of cameras hosted on a robotic platform that is driven parallel to the tunnel walls. These data are then pre-processed using image processing and deep learning techniques to reduce nuisance changes caused by light variations. Image fusion techniques are then applied to identify the changes occurring in the tunnel structure. Different pixel-based change detection approaches are used to generate temporal change maps. Decision-level fusion methods are then used to combine these change maps to obtain a more reliable detection of the changes that occur between surveys. A quantitative analysis of the results achieved shows that the proposed change detection system achieved a recall value of 81%, a precision value of 93% and an F1-score of 86.7%.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Robótica , Humanos
4.
Sensors (Basel) ; 21(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34450782

RESUMEN

This paper presents a fully original algorithm of graph SLAM developed for multiple environments-in particular, for tunnel applications where the paucity of features and the difficult distinction between different positions in the environment is a problem to be solved. This algorithm is modular, generic, and expandable to all types of sensors based on point clouds generation. The algorithm may be used for environmental reconstruction to generate precise models of the surroundings. The structure of the algorithm includes three main modules. One module estimates the initial position of the sensor or the robot, while another improves the previous estimation using point clouds. The last module generates an over-constraint graph that includes the point clouds, the sensor or the robot trajectory, as well as the relation between positions in the trajectory and the loop closures.

5.
Sensors (Basel) ; 21(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671253

RESUMEN

Mechatronics and robotics appeared particularly effective in students' education, allowing them to create non-traditional solutions in STEM disciplines, which have a direct impact and interaction with the world surrounding them. This paper presents the current state of the MiniCERNBot Educational Robotic platform for high-school and university students. The robot provides a comprehensive educative system with tutorials and tasks tuned for different ages on 3D design, mechanical assembly, control, programming, planning, and operation. The system is inspired to existing robotic systems and typical robotic interventions performed at CERN, and includes an education mock-up that follows the example of a previous real operation performed in CERN's Antimatter Factory. The paper describes the learning paths where the MiniCERNBot platform can be used by students, at different ages and disciplines. In addition, it describes the software and hardware architecture, presenting results on modularity and network performance during education exercises. In summary, the objective of the study is improving the way STEM educational and dissemination activities at CERN Robotics Lab are performed, as well as their possible synergies with other education institutions, such as High-Schools and Universities, improving the learning collaborative process and inspiring students interested in technical studies. To this end, a new educational robotic platform has been designed, inspired on real scientific operations, which allows the students practice multidisciplinary STEM skills in a collaborative problem-solving way, while increasing their motivation and comprehension of the research activities.

6.
Sensors (Basel) ; 19(14)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336628

RESUMEN

Robotic interventions in hazardous scenarios need to pay special attention to safety, as in most cases it is necessary to have an expert operator in the loop. Moreover, the use of a multi-modal Human-Robot Interface allows the user to interact with the robot using manual control in critical steps, as well as semi-autonomous behaviours in more secure scenarios, by using, for example, object tracking and recognition techniques. This paper describes a novel vision system to track and estimate the depth of metallic targets for robotic interventions. The system has been designed for on-hand monocular cameras, focusing on solving lack of visibility and partial occlusions. This solution has been validated during real interventions at the Centre for Nuclear Research (CERN) accelerator facilities, achieving 95% success in autonomous mode and 100% in a supervised manner. The system increases the safety and efficiency of the robotic operations, reducing the cognitive fatigue of the operator during non-critical mission phases. The integration of such an assistance system is especially important when facing complex (or repetitive) tasks, in order to reduce the work load and accumulated stress of the operator, enhancing the performance and safety of the mission.

7.
Sensors (Basel) ; 14(12): 23970-4003, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25615734

RESUMEN

The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA