Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(8): 237, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853194

RESUMEN

Industrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.


Asunto(s)
Biodegradación Ambiental , Glycine max , Aceites de Plantas , Aves de Corral , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Animales , Contaminantes del Suelo/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Aceites de Plantas/metabolismo , Suelo/química , Agaricales/metabolismo , Agaricales/crecimiento & desarrollo , Lactuca/crecimiento & desarrollo , Bacterias/metabolismo , Germinación/efectos de los fármacos , Residuos Industriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA