Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(1): 322-340, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31723242

RESUMEN

Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation. Female mice received a single 4 Gy whole-brain radiation dose on postnatal day (PND) 21 and were randomized to 0.24% Li2CO3 chow or normal chow from PND 49 to 77. Hippocampal neurogenesis was assessed on PND 77, 91, and 105. We found that lithium treatment had a pro-proliferative effect on neural progenitors, but neuronal integration occurred only after it was discontinued. Also, the treatment ameliorated deficits in spatial learning and memory retention observed in irradiated mice. Gene expression profiling and DNA methylation analysis identified two novel factors related to the observed effects, Tppp, associated with microtubule stabilization, and GAD2/65, associated with neuronal signaling. Our results show that lithium treatment reverses irradiation-induced loss of hippocampal neurogenesis and cognitive impairment even when introduced long after the injury. We propose that lithium treatment should be intermittent in order to first make neural progenitors proliferate and then, upon discontinuation, allow them to differentiate. Our findings suggest that pharmacological treatment of cognitive so-called late effects in childhood cancer survivors is possible.


Asunto(s)
Cognición/efectos de los fármacos , Compuestos de Litio/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/efectos de la radiación , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos
2.
J Neuroinflammation ; 17(1): 111, 2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32276642

RESUMEN

BACKGROUND: Neuroinflammation plays an important role in neonatal hypoxic-ischemic encephalopathy (HIE). Although microglia are largely responsible for injury-induced inflammatory response, they play beneficial roles in both normal and disease states. However, the effects of microglial depletion on neonatal HIE remain unclear. METHODS: Tamoxifen was administered to Cx3cr1CreER/+Rosa26DTA/+ (microglia-depleted model) and Cx3cr1CreER/+Rosa26DTA/- (control) mice at P8 and P9 to assess the effect of microglial depletion. The density of microglia was quantified using Iba-1 staining. Moreover, the proportion of resident microglia after the HI insult was analyzed using flow cytometric analysis. At P10, the HI insult was conducted using the Rice-Vannucci procedure at P10. The infarct size and apoptotic cells were analyzed at P13. Cytokine analyses were performed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at P13. RESULTS: At P10, tamoxifen administration induced > 99% microglial depletion in DTA+ mice. Following HI insult, there was persisted microglial depletion over 97% at P13. Compared to male DTA- mice, male DTA+ mice exhibited significantly larger infarct volumes; however, there were no significant differences among females. Moreover, compared to male DTA- mice, male DTA+ mice had a significantly higher density of TUNEL+ cells in the caudoputamen, cerebral cortex, and thalamus. Moreover, compared to female DTA- mice, female DTA+ mice showed a significantly greater number of TUNEL+ cells in the hippocampus and thalamus. Compared to DTA- mice, ELISA revealed significantly lower IL-10 and TGF-ß levels in both male and female DTA+ mice under both normal conditions and after HI (more pronounced). CONCLUSION: We established a microglial depletion model that aggravated neuronal damage and apoptosis after the HI insult, which was predominantly observed in males.


Asunto(s)
Hipoxia-Isquemia Encefálica/patología , Microglía , Neuronas/patología , Caracteres Sexuales , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos
3.
J Biomech Eng ; 142(11)2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32700727

RESUMEN

In this paper, we bridged faculty research expertise with concept-based learning pedagogy to design and implement a unique laboratory experience for biomedical engineering undergraduate students enrolled in the biomechanics of tissues course at the University of Calgary. This laboratory aimed to increase student engagement, facilitate deeper understanding of course content, and provide an opportunity for accelerated undergraduate research through "hands-on," "minds-on," and "science-up" learning components, respectively. The laboratory exercise involves testing aortic tissues using a novel miniaturized planar biaxial machine. This type of machine is normally reserved for use in the context of research. The relevance of the proposed laboratory as a teaching tool was assessed using student feedback. Results indicate an overall valuable and positive learning experience for students.


Asunto(s)
Ingeniería Biomédica , Laboratorios , Estudiantes , Gusto
4.
BMC Cardiovasc Disord ; 18(1): 76, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720088

RESUMEN

BACKGROUND: Functional impairment of the aorta is a recognized complication of aortic and aortic valve disease. Aortic strain measurement provides effective quantification of mechanical aortic function, and 3-dimenional (3D) approaches may be desirable for serial evaluation. Computerized tomographic angiography (CTA) is routinely performed for various clinical indications, and offers the unique potential to study 3D aortic deformation. We sought to investigate the feasibility of performing 3D aortic strain analysis in a candidate population of patients undergoing transcatheter aortic valve replacement (TAVR). METHODS: Twenty-one patients with severe aortic valve stenosis (AS) referred for TAVR underwent ECG-gated CTA and echocardiography. CTA images were analyzed using a 3D feature-tracking based technique to construct a dynamic aortic mesh model to perform peak principal strain amplitude (PPSA) analysis. Segmental strain values were correlated against clinical, hemodynamic and echocardiographic variables. Reproducibility analysis was performed. RESULTS: The mean patient age was 81±6 years. Mean left ventricular ejection fraction was 52±14%, aortic valve area (AVA) 0.6±0.3 cm2 and mean AS pressure gradient (MG) 44±11 mmHg. CTA-based 3D PPSA analysis was feasible in all subjects. Mean PPSA values for the global thoracic aorta, ascending aorta, aortic arch and descending aorta segments were 6.5±3.0, 10.2±6.0, 6.1±2.9 and 3.3±1.7%, respectively. 3D PSSA values demonstrated significantly more impairment with measures of worsening AS severity, including AVA and MG for the global thoracic aorta and ascending segment (p<0.001 for all). 3D PSSA was independently associated with AVA by multivariable modelling. Coefficients of variation for intra- and inter-observer variability were 5.8 and 7.2%, respectively. CONCLUSIONS: Three-dimensional aortic PPSA analysis is clinically feasible from routine ECG-gated CTA. Appropriate reductions in PSSA were identified with increasing AS hemodynamic severity. Expanded study of 3D aortic PSSA for patients with various forms of aortic disease is warranted.


Asunto(s)
Aorta Torácica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Válvula Aórtica/cirugía , Aortografía/métodos , Técnicas de Imagen Sincronizada Cardíacas , Angiografía por Tomografía Computarizada , Electrocardiografía , Hemodinámica , Imagenología Tridimensional , Reemplazo de la Válvula Aórtica Transcatéter , Anciano , Anciano de 80 o más Años , Aorta Torácica/fisiopatología , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/fisiopatología , Estudios de Factibilidad , Femenino , Humanos , Masculino , Modelos Cardiovasculares , Variaciones Dependientes del Observador , Modelación Específica para el Paciente , Valor Predictivo de las Pruebas , Interpretación de Imagen Radiográfica Asistida por Computador , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Estrés Mecánico
6.
Wound Repair Regen ; 24(2): 263-74, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26749086

RESUMEN

The gold standard treatment for full thickness injuries of the skin is autologous split-thickness skin grafting. This involves harvesting the epidermis and superficial dermis from healthy skin and transplanting it onto the prepared wound bed. The donor site regenerates spontaneously, but the appendages and cellular components from the dermal layer are excluded from the graft. As a result, the new tissue is inferior; the healed graft site is dry/itchy, has decreased elasticity, increased fragility, and altered sensory function. Because this dermal layer is composed of collagen and other extracellular matrix proteins, the aim was to characterize the changes in the dermal collagen after split thickness grafting that could contribute to a deficit in functionality. This will serve as a baseline for future studies designed to improve skin function using pharmacological or cell-based therapies for skin repair. A xenograft model whereby human split-thickness grafts were implanted into full-thickness defects on immunocompromised (athymic Nu/Nu) mice was used. The grafts were harvested 4 and 8 weeks later. The collagen microstructure was assessed with second harmonic generation with dual-photon microscopy and light polarization analysis. Collagen fiber stiffness and engagement stretch were estimated by fitting the results of biaxial mechanical tensile tests to a histo-mechanical constitutive model. The stiffness of the collagen fibril-proteoglycan complex increased from 682 ± 226 kPa/sr to 1016 ± 324 kPa/sr between 4 and 8 weeks postgrafting. At the microstructural level there were significant decreases in both thickness of collagen fibers (3.60 ± 0.34 µm vs. 2.10 ± 0.27 µm) and waviness ratio (2.04 ± 0.17 vs. 1.43 ± 0.08) of the collagen fibers postgrafting. The decrease of the macroscopic engagement stretch from 1.19 ± 0.11 to 1.09 ± 0.08 over time postgrafting mirrored the decrease in waviness measured at the microscopic level. This suggested that the integrity of the collagen fibers was compromised and contributed to the functional deficit of the skin postgrafting.


Asunto(s)
Quemaduras/patología , Colágeno/metabolismo , Dermis/citología , Trasplante Heterólogo , Cicatrización de Heridas/fisiología , Animales , Colágeno/ultraestructura , Dermis/trasplante , Modelos Animales de Enfermedad , Matriz Extracelular/ultraestructura , Supervivencia de Injerto , Humanos , Ratones , Ratones Desnudos , Fenómenos Fisiológicos de la Piel
7.
Transl Stroke Res ; 15(1): 69-86, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36705821

RESUMEN

Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular , Recién Nacido , Humanos , Niño , Accidente Cerebrovascular/terapia , Encéfalo/metabolismo , Neuroprotección
8.
Bioengineering (Basel) ; 11(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39061772

RESUMEN

The formation of an aneurysm in the false lumen (FL) is a long-term complication in a significant percentage of type B aortic dissection (AD) patients. The ability to predict which patients are likely to progress to aneurysm formation is key to justifying the risks of interventional therapy. The investigation of patient-specific hemodynamics has the potential to enable a patient-tailored approach to improve prognosis by guiding disease management for type B dissection. CFD-derived hemodynamic descriptors and geometric features were used to retrospectively assess individual aortas for a population of residual type B AD patients and analyze correlations with known outcomes (i.e., rapid aortic growth, death). The results highlight great variability in flow patterns and hemodynamic descriptors. A rapid aortic expansion was found to be associated with a larger FL. Time-averaged wall shear stress at the tear region emerged as a possible indicator of the dynamics of flow exchange between lumens and its effect on the evolution of individual aortas. High FL flow rate and tortuosity were associated with adverse outcomes suggesting a role as indicators of risk. AD induces complex changes in vessel geometry and hemodynamics. The reported findings emphasize the need for a patient-tailored approach when evaluating uncomplicated type B AD patients and show the potential of CFD-derived hemodynamics to complement anatomical assessment and help disease management.

9.
iScience ; 27(4): 109346, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500830

RESUMEN

Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day 9. Using inflammatory pathway and transcription factor (TF) analyses, we identified a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic, and inflammatory molecular signatures. Three days after injury, transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence. Interestingly, microglia-specific genes in CX3CR1GFP/+ cells showed a sexual dimorphism, where expression returned to control levels in males but not in females during the experimental time frame. These results highlight the importance of further investigations on metabolic rewiring to pave the way for future interventions in asphyxiated neonates.

10.
Europace ; 15(11): 1557-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23608029

RESUMEN

AIMS: To examine morphology and mechanical properties of the atrial 'intima', which we defined as the tissue interposed between atrial endocardium and myocardium, in patients without known cardiovascular disease. METHODS AND RESULTS: Post-mortem right and left atrial tissue was obtained from male infants (<1 year, n = 4), children (10-19 years, n = 4), and adults (58-69 years, n = 7). Using light microscopy and an ocular micrometer, atrial intimal (AIT) thickness was measured. Intimal collagen bundle thickness was measured using electron microscopy. Passive atrial wall stiffness was measured using a planar biaxial testing device. Among infants, left AIT (0.2 ± 0.2 mm) and right (0.2 ± 0.1 mm) AIT were not significantly different (P = 0.84). Among children, left AIT (0.6 ± 0.2 mm) was significantly greater than right (0.2 ± 0.1 mm) AIT (P = 0.03), and left AIT was marginally greater than in infants (P = 0.07). Among adults, with the exception of the appendage region, left AIT (1.0 ± 0.2 mm) was markedly greater than right AIT (0.3 ± 0.1 mm; P < 0.05), and left AIT was significantly greater than that in other age groups (P < 0.05). There were no differences in right AIT among age groups. Left intimal collagen bundle thickness was greater in adults (0.0512 ± 0.0056 µm) than infants (0.0432 ± 0.0071 µm) or children (0.0435 ± 0.0013 µm), and bundles were less organized. Wall stiffness was attributable primarily to the intima (1245 ± 132, vs. 260 ± 45 N/m(2) for the remaining atrial wall). CONCLUSION: The left atrial intima, but not the right, thickens with age, becomes more disorganized ultrastructurally, and is responsible for the majority of atrial wall stiffness.


Asunto(s)
Endocardio/ultraestructura , Atrios Cardíacos/ultraestructura , Miocardio/ultraestructura , Adolescente , Factores de Edad , Anciano , Autopsia , Niño , Colágeno/ultraestructura , Endocardio/patología , Atrios Cardíacos/patología , Humanos , Lactante , Recién Nacido , Masculino , Microscopía , Microscopía Electrónica , Persona de Mediana Edad , Miocardio/patología , Adulto Joven
11.
J Biomech Eng ; 135(3): 31001, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24231812

RESUMEN

To properly simulate the behavior of biological structures through computer modeling, there exists a need to describe parameters that vary locally. These parameters can be obtained either from literature or from experimental data and they are often assigned to regions in the model as lumped values. Furthermore, parameter values may be obtained on a representative case and may not be available for each specific modeled organ. We describe a semiautomated technique to assign detailed maps of local tissue properties to a computational model of a biological structure. We applied the method to the left atrium of the heart. The orientation of myocytes in the tissue as obtained from histologic analysis was transferred to the 3D model of a porcine left atrium. Finite element method (FEM) dynamic simulations were performed by using an isotropic, neo-Hookean, constitutive model first, then adding an anisotropic, cardiomyocyte oriented, Fung-type component. Results showed higher stresses for the anisotropic material model corresponding to lower stretches in the cardiomyocyte directions. The same methodology can be applied to transfer any map of parameters onto a discretized finite element model.


Asunto(s)
Simulación por Computador , Atrios Cardíacos/citología , Miocitos Cardíacos/citología , Algoritmos , Fenómenos Biomecánicos , Análisis de Elementos Finitos
12.
JVS Vasc Sci ; 4: 100119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662586

RESUMEN

Objective: The purpose of this study was to employ biomechanics-based biomarkers to locally characterize abdominal aortic aneurysm (AAA) tissue and investigate their relation to local aortic growth by means of an artificial intelligence model. Methods: The study focused on a population of 36 patients with AAAs undergoing serial monitoring with electrocardiogram-gated multiphase computed tomography angiography acquisitions. The geometries of the aortic lumen and wall were reconstructed from the baseline scans and used for the baseline assessment of regional aortic weakness with three functional biomarkers, time-averaged wall-shear stress, in vivo principal strain, and intra-luminal thrombus thickness. The biomarkers were encoded as regional averages on axial and circumferential sections perpendicularly to the aortic centerline. Local diametric growth was obtained as difference in diameter between baseline and follow-up at the level of each axial section. An artificial intelligence model was developed to predict accelerated aneurysmal growth with the Extra Trees algorithm used as a binary classifier where the positive class represented regions that grew more than 2.5 mm/year. Additional clinical biomarkers, such as maximum aortic diameter at baseline, were also investigated as predictors of growth. Results: The area under the curve for the constructed receiver operating characteristic curve for the Extra Trees classifier showed a very good performance in predicting relevant aortic growth (area under the curve = 0.92), with the three biomechanics-based functional biomarkers being objectively selected as the main predictors of growth. Conclusions: The use of features based on the functional and local characterization of the aortic tissue resulted in a superior performance in terms of growth prediction when compared with models based on geometrical assessments. With rapid growth linked to increasing risk for patients with AAAs, the ability to access functional information related to tissue weakening and disease progression at baseline has the potential to support early clinical decisions and improve disease management.

13.
Int J Numer Method Biomed Eng ; 39(6): e3708, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37079441

RESUMEN

In this research, a pipeline was developed to assess the out-of-sample predictive capability of structure-based constitutive models of ascending aortic aneurysmal tissue. The hypothesis being tested is that a biomarker can help establish similarities among tissues sharing the same level of a quantifiable property, thus enabling the development of biomarker-specific constitutive models. Biomarker-specific averaged material models were constructed from biaxial mechanical tests of specimens that shared similar biomarker properties such as level of blood-wall shear stress or microfiber (elastin or collagen) degradation in the extracellular matrix. Using a cross-validation strategy commonly used in classification algorithms, biomarker-specific averaged material models were assessed in contrast to individual tissue mechanics of out of sample specimens that fell under the same category but did not contribute to the averaged model's generation. The normalized root means square errors (NRMSE) calculated on out-of-sample data were compared with average models when no categorization was performed versus biomarker-specific models and among different level of a biomarker. Different biomarker levels exhibited statistically different NRMSE when compared among each other, indicating more common features shared by the specimens belonging to the lower error groups. However, no specific biomarkers reached a significant difference when compared to the average model created when No Categorization was performed, possibly on account of unbalanced number of specimens. The method developed could allow for the screening of different biomarkers or combinations/interactions in a systematic manner leading the way to larger datasets and to more individualized constitutive approaches.


Asunto(s)
Aorta Torácica , Aneurisma de la Aorta Torácica , Humanos , Aorta , Estrés Mecánico , Colágeno/metabolismo , Biomarcadores , Fenómenos Biomecánicos
14.
Artículo en Inglés | MEDLINE | ID: mdl-36797175

RESUMEN

OBJECTIVE: In this study we aimed to conclusively determine whether altered aortic biomechanics are associated with wall shear stress (WSS) independent of region of tissue collection. Elevated WSS in the ascending aorta of patients with bicuspid aortic valve has been shown to contribute to local maladaptive aortic remodeling and might alter biomechanics. METHODS: Preoperative 4-dimensional flow magnetic resonance imaging was performed on 22 patients who underwent prophylactic aortic root and/or ascending aorta replacement. Localized elevated WSS was identified in patients using age-matched healthy atlases (n = 60 controls). Tissue samples (n = 78) were collected and categorized according to WSS (elevated vs normal) and region. Samples were subjected to planar biaxial testing. To fully quantify the nonlinear biomechanical response, the tangential modulus (local stiffness) at a low-stretch (LTM) and high-stretch (HTM) linear region and the onset (TZo) and end stress of the nonlinear transition zone were measured. A linear mixed effect models was implemented to determine statistical relationships. RESULTS: A higher LTM in the circumferential and axial direction was associated with elevated WSS (P = .007 and P = .018 respectively) independent of collection region. Circumferential TZo and HTM were higher with elevated WSS (P = .024 and P = .003); whereas the collection region was associated with variations in axial TZo (P = .013), circumferential HTM (P = .015), and axial HTM (P = .001). CONCLUSIONS: This study shows strong evidence that biomechanical changes in the aorta are strongly associated with hemodynamics, and not region of tissue collection for bicuspid valve aortopathy patients. Elevated WSS is associated with tissue behavior at low stretch ranges (ie, LTM and TZo).

15.
J Biomech Eng ; 134(2): 021008, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22482675

RESUMEN

Atrial fibrillation (AF) is a cardiac arrhythmia that highly increases the risk of stroke and is associated with significant but still unexplored changes in the mechanical behavior of the tissue. Planar biaxial tests were performed on tissue specimens from pigs at the healthy stage and after ventricular tachypacing (VTP), a procedure applied to reproduce the relevant features of AF. The local arrangement of the fiber bundles in the tissue was investigated on specimens from rabbit atria by means of circularly polarized light. Based on this, mechanical data were fitted to two anisotropic constitutive relationships, including a four-parameter Fung-type model and a microstructurally-motivated model. Accounting for the fiber-induced anisotropy brought average R(2) = 0.807 for the microstructurally-motivated model and average R(2) = 0.949 for the Fung model. Validation of the fitted constitutive relationships was performed by means of FEM simulations coupled to FORTRAN routines. The performances of the two material models in predicting the second Piola-Kirchhoff stress were comparable, with average errors <3.1%. However, the Fung model outperformed the other in the prediction of the Green-Lagrange strain, with 9.2% maximum average error. To increase model generality, a proper averaging procedure accounting for nonlinearities was used to obtain average material parameters. In general, a stiffer behavior after VTP was noted.


Asunto(s)
Salud , Atrios Cardíacos , Ventrículos Cardíacos , Fenómenos Mecánicos , Marcapaso Artificial/efectos adversos , Porcinos , Animales , Fenómenos Biomecánicos , Femenino , Análisis de Elementos Finitos , Atrios Cardíacos/citología , Atrios Cardíacos/patología , Conejos , Reproducibilidad de los Resultados , Factores de Tiempo
16.
Front Cardiovasc Med ; 9: 1040053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684599

RESUMEN

Abdominal aortic aneurysm (AAA) is one of the leading causes of death worldwide. AAAs often remain asymptomatic until they are either close to rupturing or they cause pressure to the spine and/or other organs. Fast progression has been linked to future clinical outcomes. Therefore, a reliable and efficient system to quantify geometric properties and growth will enable better clinical prognoses for aneurysms. Different imaging systems can be used to locate and characterize an aneurysm; computed tomography (CT) is the modality of choice in many clinical centers to monitor later stages of the disease and plan surgical treatment. The lack of accurate and automated techniques to segment the outer wall and lumen of the aneurysm results in either simplified measurements that focus on few salient features or time-consuming segmentation affected by high inter- and intra-operator variability. To overcome these limitations, we propose a model for segmenting AAA tissues automatically by using a trained deep learning-based approach. The model is composed of three different steps starting with the extraction of the aorta and iliac arteries followed by the detection of the lumen and other AAA tissues. The results of the automated segmentation demonstrate very good agreement when compared to manual segmentation performed by an expert.

17.
Front Cardiovasc Med ; 9: 922353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035900

RESUMEN

Bicuspid aortic valve (BAV), which affects up to 2% of the general population, results from the abnormal fusion of the cusps of the aortic valve. Patients with BAV are at a higher risk for developing aortic dilatation, a condition known as bicuspid aortopathy, which is associated with potentially life-threatening sequelae such as aortic dissection and aortic rupture. Although BAV biomechanics have been shown to contribute to aortopathy, their precise impact is yet to be delineated. Herein, we present the latest literature related to BAV biomechanics. We present the most recent definitions and classifications for BAV. We also summarize the current evidence pertaining to the mechanisms that drive bicuspid aortopathy. We highlight how aberrant flow patterns can contribute to the development of aortic dilatation. Finally, we discuss the role cardiac magnetic resonance imaging can have in assessing and managing patient with BAV and bicuspid aortopathy.

18.
JTCVS Open ; 9: 1-10, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36003475

RESUMEN

Objective: This study correlates low strain tangential modulus (LTM) and transition zone onset (TZo) stress, biomechanical parameters that occur within the physiological range of stress seen in vivo, with tissue strength and histopathologic changes in aneurysmal ascending aortic tissue. Method: Ascending aortic aneurysm tissue samples were collected from 41 patients undergoing elective resection. Samples were subjected to planar biaxial testing to quantify LTM and TZo. These were then correlated with strength assessed from uniaxial testing and with histopathologic quantification of pathologic derangements in elastin, collagen, and proteoglycan (PG). Results: Decreased LTM and TZo were correlated with reduced strength (P < .05), PG content (P < .05), and elastin content (P < .05). Reduced TZo also was correlated with increased elastin fragmentation (P < .05). Conclusions: LTM and TZo are correlated with common biomechanical and histopathologic alterations in ascending aortic aneurysm tissue that are thought to relate to the risk of acute aortic syndromes. LTM and TZo are measured under conditions approximating in vivo physiology and have the potential to be obtained noninvasively using medical imaging techniques. Therefore, they represent parameters that warrant future study as potential contributors to our growing knowledge of pathophysiology, disease progression, and risk stratification of aortic disease.

19.
Ann Cardiothorac Surg ; 11(4): 426-435, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35958543

RESUMEN

Background: Aortic wall remodelling in bicuspid aortic valve (BAV) patients is heterogeneous and characterized by elastin fiber breakdown alongside impaired biomechanics. However, the relationship between aortic histopathological changes and biomechanics are incompletely understood. We clarify the influence of elastin fiber integrity on ex vivo aortic wall mechanical properties in BAV patients, and explore the influence of patient age. Methods: Aortic tissue samples (N=66) from 19 BAV patients undergoing prophylactic ascending aortic resection surgery were analyzed. Semi-quantitative histopathological analysis was conducted to assess elastin fiber integrity including elastin content and elastic fiber fragmentation. Ex vivo biaxial mechanical testing generated stress-strain curves from which physiological [low-strain tangential modulus (LTM), transition zone onset stress (TZo)] and supraphysiological [transition zone end stress (TZe) and high-strain tangential modulus (HTM)] mechanical properties were obtained. Relationships between histopathology and mechanical properties were determined using a linear mixed effect model. BAV patients were subdivided according to 'younger' and 'older' age groups (i.e., 51-60 and 61-70 years old, respectively). Results: No statistically significant differences in elastin content were observed between younger and older BAV patients. Older patients showed greater elastin fiber fragmentation compared to their younger cohort (74% versus 61%). Elastin fiber histopathology was associated with differences in physiological mechanical properties: elastin fragmentation corresponded with lower LTM (P=0.005) and TZo (P=0.044) in younger BAV patients and higher LTM (P=0.049) and TZo (P=0.001) in older BAV patients. Histopathology changes were significantly associated with supraphysiological mechanical properties only in older BAV patients: decreased elastin integrity was associated with increased TZe (P=0.049) and HTM (P<0.001). Conclusions: Elastin histopathologic changes in BAV aortopathy correspond with differences in mechanical properties and this relationship is influenced by patient age. These novel findings provide additional mechanistic insights into aortic wall remodeling and support a more nuanced stratification of BAV patients by age.

20.
J Biomech ; 125: 110542, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34237660

RESUMEN

This study investigates the biomechanical properties of ascending aortic aneurysms focusing on the inter-patient differences vs. the heterogeneity within a patient's aneurysm. Each specimen was tested on a biaxial testing device and the resulting stress-strain response was fitted to a four-parameter Fung constitutive model. We postulate that the inter-patient variability (differences between patients) blurs possible intra-patient variability (regional heterogeneity) and, thus, that both effects must be considered to shed light on the role of heterogeneity in aneurysm progression. We propose, demonstrate, and discuss two techniques to assess differences by, first, comparing conventional biomechanical properties and, second, the overall constitutive response. Results show that both inter- and intra-patient variability contribute to errors when using population averaged models to fit individual tissue behaviour. When inter-patient variability was accounted for and its effects excluded, intra-patient heterogeneity could be assessed, showing a wide degree of heterogeneity at the individual patient level. Furthermore, the right lateral region (from the patient's perspective) appeared different (stiffer) than the other regions. We posit that this heterogeneity could be a consequence of maladaptive remodelling due to altered loading conditions that hastens microstructural changes naturally occurring with age. Further validation of these results should be sought from a larger cohort study.


Asunto(s)
Aneurisma de la Aorta Torácica , Aneurisma de la Aorta , Estudios de Cohortes , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA