Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 21(11): e50078, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32909687

RESUMEN

The dynamic interplay between cancer cells and cancer-associated fibroblasts (CAFs) is regulated by multiple signaling pathways, which can lead to cancer progression and therapy resistance. We have previously demonstrated that hMENA, a member of the actin regulatory protein of Ena/VASP family, and its tissue-specific isoforms influence a number of intracellular signaling pathways related to cancer progression. Here, we report a novel function of hMENA/hMENAΔv6 isoforms in tumor-promoting CAFs and in the modulation of pro-tumoral cancer cell/CAF crosstalk via GAS6/AXL axis regulation. LC-MS/MS proteomic analysis reveals that CAFs that overexpress hMENAΔv6 secrete the AXL ligand GAS6, favoring the invasiveness of AXL-expressing pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC) cells. Reciprocally, hMENA/hMENAΔv6 regulates AXL expression in tumor cells, thus sustaining GAS6-AXL axis, reported as crucial in EMT, immune evasion, and drug resistance. Clinically, we found that a high hMENA/GAS6/AXL gene expression signature is associated with a poor prognosis in PDAC and NSCLC. We propose that hMENA contributes to cancer progression through paracrine tumor-stroma crosstalk, with far-reaching prognostic and therapeutic implications for NSCLC and PDAC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Pancreáticas , Actinas , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Cromatografía Liquida , Humanos , Neoplasias Pulmonares/genética , Proteínas de Microfilamentos , Neoplasias Pancreáticas/genética , Proteómica , Células del Estroma , Espectrometría de Masas en Tándem
2.
Proc Natl Acad Sci U S A ; 115(12): 3132-3137, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29439204

RESUMEN

Aberrant activation of endothelin-1 receptors (ET-1R) elicits pleiotropic effects relevant for tumor progression. The network activated by this receptor might be finely, spatially, and temporarily orchestrated by ß-arrestin1 (ß-arr1)-driven interactome. Here, we identify hMENA, a member of the actin-regulatory protein ENA/VASP family, as an interacting partner of ß-arr1, necessary for invadopodial function downstream of ET-1R in serous ovarian cancer (SOC) progression. ET-1R activation by ET-1 up-regulates expression of hMENA/hMENAΔv6 isoforms through ß-arr1, restricted to mesenchymal-like invasive SOC cells. The interaction of ß-arr1 with hMENA/hMENAΔv6 triggered by ET-1 leads to activation of RhoC and cortactin, recruitment of membrane type 1-matrix metalloprotease, and invadopodia maturation, thereby enhancing cell plasticity, transendothelial migration, and the resulting spread of invasive cells. The treatment with the ET-1R antagonist macitentan impairs the interaction of ß-arr1 with hMENA and inhibits invadopodial maturation and tumor dissemination in SOC orthotopic xenografts. Finally, high ETAR/hMENA/ß-arr1 gene expression signature is associated with a poor prognosis in SOC patients. These data define a pivotal function of hMENA/hMENAΔv6 for ET-1/ß-arr1-induced invadopodial activity and ovarian cancer progression.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Endotelina-1/metabolismo , Proteínas de Microfilamentos/metabolismo , Neoplasias Ováricas/patología , beta-Arrestina 1/metabolismo , Animales , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidad , Citoesqueleto/metabolismo , Antagonistas de los Receptores de la Endotelina A/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Proteínas de Microfilamentos/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Podosomas/efectos de los fármacos , Podosomas/metabolismo , Pirimidinas/farmacología , Receptor de Endotelina A/metabolismo , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína rhoC de Unión a GTP/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(47): 19280-5, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129656

RESUMEN

Human mena (hMENA), a member of the actin cytoskeleton regulators Ena/VASP, is overexpressed in high-risk preneoplastic lesions and in primary breast tumors and has been identified as playing a role in invasiveness and poor prognosis in breast cancers that express HER2. Here we identify a unique isoform, hMENAΔv6, derived from the hMENA alternative splicing program. In an isogenic model of human breast cancer progression, we show that hMENA(11a) is expressed in premalignant cells, whereas hMENAΔv6 expression is restricted to invasive cancer cells. "Reversion" of the malignant phenotype leads to concurrent down-regulation of all hMENA isoforms. In breast cancer cell lines, isoform-specific hMENA overexpression or knockdown revealed that in the absence of hMENA(11a), overexpression of hMENAΔv6 increased cell invasion, whereas overexpression of hMENA(11a) reduced the migratory and invasive ability of these cells. hMENA(11a) splicing was shown to be dependent on the epithelial regulator of splicing 1 (ESRP1), and forced expression of ESRP1 in invasive mesenchymal breast cancer cells caused a phenotypic switch reminiscent of a mesenchymal-to-epithelial transition (MET) characterized by changes in the cytoskeletal architecture, reexpression of hMENA(11a), and a reduction in cell invasion. hMENA-positive primary breast tumors, which are hMENA(11a)-negative, are more frequently E-cadherin low in comparison with tumors expressing hMENA(11a). These data suggest that polarized and growth-arrested cellular architecture correlates with absence of alternative hMENA isoform expression, and that the hMENA splicing program is relevant to malignant progression in invasive disease.


Asunto(s)
Empalme Alternativo/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Mesodermo/patología , Proteínas de Microfilamentos/genética , Citoesqueleto de Actina/metabolismo , Antígenos CD , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Clonación Molecular , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Mesodermo/metabolismo , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Invasividad Neoplásica , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transfección , Vimentina/metabolismo
4.
Breast Cancer Res ; 16(5): 459, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25606594

RESUMEN

Following a highly dynamic and complex dialogue between the epithelium and the surrounding microenvironment, the mammary gland develops into a branching structure during puberty, buds during pregnancy, forms intricate polar acini during lactation and, once the babies are weaned, remodels and involutes. At every stage of menstrual and pregnancy cycles, interactions between the cells and the extracellular matrix (ECM) and homotypic and heterotypic cell­cell interactions give rise to the architecture and function of the gland at that junction. These orchestrated programs would not be possible without the important role of the ECM receptors, integrins being the prime examples. The ECM­integrin axis regulates many crucial cellular functions including survival, migration and quiescence; the imbalance in any of these processes could contribute to oncogenesis. In this review we spotlight the involvement of two prominent integrin subunits, ß1 and ß4 integrins, in cross-talk with tyrosine kinase receptors, and we discuss the roles of these integrin subunits in the biology of normal breast differentiation and as potential prognostic and therapeutic targets in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Integrina beta1/fisiología , Integrina beta4/fisiología , Glándulas Mamarias Humanas/crecimiento & desarrollo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Adhesión Celular , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo
5.
EBioMedicine ; 101: 105003, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340557

RESUMEN

BACKGROUND: Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS: Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS: Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTßR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTßR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTßR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION: This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING: This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Estructuras Linfoides Terciarias , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fibronectinas , Inhibidores de Puntos de Control Inmunológico , Proteínas de Microfilamentos/metabolismo , Línea Celular Tumoral , Isoformas de Proteínas , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Microambiente Tumoral
6.
J Exp Clin Cancer Res ; 42(1): 347, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124183

RESUMEN

In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fibroblastos/metabolismo , Neoplasias/patología , Fenotipo , Microambiente Tumoral/genética
7.
J Exp Clin Cancer Res ; 42(1): 317, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008717

RESUMEN

BACKGROUND: BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS: Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS: We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS: Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.


Asunto(s)
Melanoma , MicroARNs , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , MicroARNs/metabolismo , Nestina/genética , Nestina/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
8.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37612043

RESUMEN

BACKGROUND: Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation. METHODS: Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort. RESULTS: Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNß via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy. CONCLUSIONS: Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Interferón Tipo I , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Isoformas de Proteínas
9.
Cancers (Basel) ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36230627

RESUMEN

The tumor stroma, which comprises stromal cells and non-cellular elements, is a critical component of the tumor microenvironment (TME). The dynamic interactions between the tumor cells and the stroma may promote tumor progression and metastasis and dictate resistance to established cancer therapies. Therefore, novel antitumor approaches should combine anticancer and anti-stroma strategies targeting dysregulated tumor extracellular matrix (ECM). ECM remodeling is a hallmark of solid tumors, leading to extensive biochemical and biomechanical changes, affecting cell signaling and tumor tissue three-dimensional architecture. Increased deposition of fibrillar collagen is the most distinctive alteration of the tumor ECM. Consequently, several anticancer therapeutic strategies have been developed to reduce excessive tumor collagen deposition. Herein, we provide an overview of the current advances and challenges of the main approaches aiming at tumor collagen normalization, which include targeted anticancer drug delivery, promotion of degradation, modulation of structure and biosynthesis of collagen, and targeting cancer-associated fibroblasts, which are the major extracellular matrix producers.

10.
J Exp Clin Cancer Res ; 40(1): 102, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731188

RESUMEN

Deciphering extracellular matrix (ECM) composition and architecture may represent a novel approach to identify diagnostic and therapeutic targets in cancer. Among the ECM components, fibronectin and its fibrillary assembly represent the scaffold to build up the entire ECM structure, deeply affecting its features. Herein we focus on this extraordinary protein starting from its complex structure and defining its role in cancer as prognostic and theranostic marker.


Asunto(s)
Fibronectinas/metabolismo , Oncología Médica/métodos , Neoplasias/patología , Humanos , Pronóstico
11.
Clin Cancer Res ; 14(15): 4943-50, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18676769

RESUMEN

PURPOSE: hMena, member of the enabled/vasodilator-stimulated phosphoprotein family, is a cytoskeletal protein that is involved in the regulation of cell motility and adhesion. The aim of this study was to determine whether or not the expression of hMena isoforms correlated with sensitivity to EGFR tyrosine kinase inhibitors and could serve as markers with potential clinical use. EXPERIMENTAL DESIGN: Human pancreatic ductal adenocarcinoma cell lines were characterized for in vitro sensitivity to erlotinib, expression of HER family receptors, markers of epithelial to mesenchymal transition, and expression of hMena and its isoform hMena(+11a). The effects of epidermal growth factor (EGF) and erlotinib on hMena expression as well as the effect of hMena knockdown on cell proliferation were also evaluated. RESULTS: hMena was detected in all of the pancreatic tumor cell lines tested as well as in the majority of the human tumor samples [primary (92%) and metastatic (86%)]. Intriguingly, in vitro hMena(+11a) isoform was specifically associated with an epithelial phenotype, EGFR dependency, and sensitivity to erlotinib. In epithelial BxPC3 cells, epidermal growth factor up-regulated hMena/hMena(+11a) and erlotinib down-regulated expression. hMena knockdown reduced cell proliferation and mitogen-activated protein kinase and AKT activation in BxPC3 cells, and promoted the growth inhibitory effects of erlotinib. CONCLUSIONS: Collectively, our data indicate that the hMena(+11a) isoform is associated with an epithelial phenotype and identifies EGFR-dependent cell lines that are sensitive to the EGFR inhibitor erlotinib. The availability of anti-hMena(+11a)-specific probes may offer a new tool in pancreatic cancer management if these results can be verified prospectively in cancer patients.


Asunto(s)
Adenocarcinoma/terapia , Epitelio/metabolismo , Receptores ErbB/antagonistas & inhibidores , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/fisiología , Neoplasias Pancreáticas/terapia , Adenocarcinoma/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Proliferación Celular , Clorhidrato de Erlotinib , Humanos , Mesodermo/metabolismo , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Fenotipo , Quinazolinas/farmacología
12.
Cancer Res ; 67(6): 2657-65, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17363586

RESUMEN

hMena (ENAH), an actin regulatory protein involved in the control of cell motility and adhesion, is modulated during human breast carcinogenesis. In fact, whereas undetectable in normal mammary epithelium, hMena becomes overexpressed in high-risk benign lesions and primary and metastatic tumors. In vivo, hMena overexpression correlates with the HER-2(+)/ER(-)/Ki67(+) unfavorable prognostic phenotype. In vitro, neuregulin-1 up-regulates whereas Herceptin treatment down-modulates hMena expression, suggesting that it may couple tyrosine kinase receptor signaling to the actin cytoskeleton. Herein, we report the cloning of hMena and of a splice variant, hMena(+11a), which contains an additional exon corresponding to 21 amino acids located in the EVH2 domain, from a breast carcinoma cell line of epithelial phenotype. Whereas hMena overexpression consistently characterizes the transformed phenotype of tumor cells of different lineages, hMena(+11a) isoform is concomitantly present only in epithelial tumor cell lines. In breast cancer cell lines, epidermal growth factor (EGF) treatment promotes concomitant up-regulation of hMena and hMena(+11a), resulting in an increase of the fraction of phosphorylated hMena(+11a) isoform only. hMena(+11a) overexpression and phosphorylation leads to increased p42/44 mitogen-activated protein kinase (MAPK) activation and cell proliferation as evidenced in hMena(+11a)-transfected breast cancer cell lines. On the contrary, hMena knockdown induces reduction of p42/44 MAPK phosphorylation and of the proliferative response to EGF. The present data provide new insight into the relevance of actin cytoskeleton regulatory proteins and, in particular, of hMena isoforms in coupling multiple signaling pathways involved in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Proteínas de Microfilamentos/genética , Secuencia de Aminoácidos , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Clonación Molecular , Activación Enzimática , Humanos , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Isoformas de Proteínas , Regulación hacia Arriba/efectos de los fármacos
13.
J Exp Clin Cancer Res ; 38(1): 117, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30898166

RESUMEN

Immune checkpoint inhibitor therapy has changed clinical practice for patients with different cancers, since these agents have demonstrated a significant improvement of overall survival and are effective in many patients. However, an intrinsic or acquired resistance frequently occur and biomarkers predictive of responsiveness should help in patient selection and in defining the adequate treatment options. A deep analysis of the complexity of the tumor microenvironment is likely to further advance the field and hopefully identify more effective combined immunotherapeutic strategies. Here we review the current knowledge on tumor microenvironment, focusing on T cells, cancer associated fibroblasts and extracellular matrix. The use of 3D cell culture models to resemble tumor microenvironment landscape and to screen immunomodulatory drugs is also reviewed.


Asunto(s)
Modelos Biológicos , Neoplasias/inmunología , Esferoides Celulares/citología , Fibroblastos Asociados al Cáncer/inmunología , Matriz Extracelular/inmunología , Humanos , Neoplasias/patología , Impresión Tridimensional , Esferoides Celulares/patología , Linfocitos T/inmunología , Andamios del Tejido , Microambiente Tumoral
14.
Oncogene ; 37(42): 5605-5617, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29907768

RESUMEN

We demonstrated previously that the splicing of the actin regulator, hMENA, generates two alternatively expressed isoforms, hMENA11a and hMENAΔv6, which have opposite functions in cell invasiveness. Their mechanisms of action have remained unclear. Here we report two major findings: (i) hMENA regulates ß1 integrin expression. This was shown by depleting total hMENA, which led to loss of nuclear expression of serum response factor (SRF)-coactivator myocardin-related transcription factor 1 (MRTF-A), leading to an increase in the G-actin/F-actin ratio crucial for MRTF-A localization. This in turn inhibited SRF activity and the expression of its target gene ß1 integrin. (ii) hMENA11a reduces and hMENAΔv6 increases ß1 integrin activation and signaling. Moreover, exogenous expression of hMENA11a in hMENAΔv6-positive cancer cells dramatically reduces secretion of extracellular matrix (ECM) components, including ß1 integrin ligands and metalloproteinases. On the other hand, overexpression of the pro-invasive hMENAΔv6 increases fibronectin production. In primary tumors high hMENA11a correlates with low stromal fibronectin and a favorable clinical outcome of early node-negative non-small-cell lung cancer patients. These data provide new insights into the roles of hMENA11a and hMENAΔv6 in the druggable ß1 integrin-ECM signaling axis and allow stratification of patient risk, guiding their clinical management.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Fibronectinas/metabolismo , Integrina beta1/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Microfilamentos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Neoplasias Pulmonares/metabolismo , Isoformas de Proteínas , Transducción de Señal , Microambiente Tumoral/fisiología
15.
Clin Cancer Res ; 12(5): 1470-8, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16533770

RESUMEN

PURPOSE: hMena (ENAH), a cytoskeleton regulatory protein involved in the regulation of cell motility and adhesion, is overexpressed in breast cancer. The aim of this study was to define at what stage of breast carcinogenesis hMena is overexpressed and to correlate hMena overexpression with established prognostic factors in breast cancer, focusing on human epidermal growth factor receptor-2 (HER-2). EXPERIMENTAL DESIGN: hMena expression was assessed immunohistochemically in a prospective cohort of cases (n = 360) encompassing a highly representative spectrum of benign breast diseases associated with different risk of transformation, in situ, invasive, and metastatic tumors. Correlations with conventional pathologic and prognostic variables, such as proliferation index, hormonal receptor status, and HER-2 overexpression, were also evaluated. In vitro experiments were done to study the effect of neuregulin-1 and Herceptin treatments on hMena expression. RESULTS: hMena protein is undetectable in normal breast and is weakly expressed in a small percentage of low-risk benign diseases (9%), but displays a progressive and significant increase of positivity in benign lesions at higher risk of transformation (slightly increased risk 43%; moderate increased risk 67%), in in situ (72%), invasive (93%), and metastatic breast cancer (91%). A significant direct correlation with tumor size (P = 0.04), proliferation index (P < 0.0001), and HER-2 overexpression (P < 0.0001) and an inverse relationship with estrogen (P = 0.036) and progesterone receptors (P = 0.001) are found in invasive carcinomas. In vitro experiments show that neuregulin-1 up-regulates, whereas Herceptin down-regulates, hMena expression. CONCLUSIONS: Our data provide new insights into the relevance of actin-binding proteins in human breast carcinogenesis and indicate hMena overexpression as a surrogate indicator in breast disease management.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica , Proteínas del Citoesqueleto/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Biomarcadores de Tumor , Mama , Neoplasias de la Mama/patología , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/secundario , Carcinoma Papilar/metabolismo , Carcinoma Papilar/secundario , Proliferación Celular , Estudios de Cohortes , Femenino , Humanos , Persona de Mediana Edad , Invasividad Neoplásica/patología , Neoplasias Ductales, Lobulillares y Medulares/metabolismo , Neoplasias Ductales, Lobulillares y Medulares/secundario , Neurregulina-1/farmacología , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Trastuzumab
16.
Cytokine Growth Factor Rev ; 36: 67-77, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28595838

RESUMEN

Tumorigenesis and tumor progression relies on the dialectics between tumor cells, the extracellular matrix and its remodelling enzymes, neighbouring cells and soluble cues. The host immune response is crucial in eliminating or promoting tumor growth and the reciprocal coevolution of tumor and immune cells, during disease progression and in response to therapy, shapes tumor fate by activating innate and adaptive mechanisms. The phenotypic plasticity is a common feature of epithelial and immune cells and epithelial-mesenchymal transition (EMT) is a dynamic process, governed by microenvironmental stimuli, critical in tumor cell shaping, increased tumor cell heterogeneity and stemness. In this review we will outline how the dysregulation of microenvironmental signaling is crucial in determining tumor plasticity and EMT, arguing how therapy resistance hinges on these dynamics.


Asunto(s)
Citocinas/fisiología , Transición Epitelial-Mesenquimal , Neoplasias/inmunología , Neoplasias/fisiopatología , Microambiente Tumoral , Animales , Transformación Celular Neoplásica , Progresión de la Enfermedad , Matriz Extracelular/fisiología , Humanos , Inflamación , Ratones , Neoplasias/genética , Neoplasias/patología , Células Madre Neoplásicas/fisiología , Transducción de Señal , Microambiente Tumoral/inmunología
17.
J Hematol Oncol ; 10(1): 16, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086938

RESUMEN

BACKGROUND: We have previously shown that in pancreatic ductal adenocarcinoma (PDA) cells, the glycolytic enzyme alpha-enolase (ENO1) also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts. We therefore investigated the effect of ENO1 silencing on the modulation of cell morphology, adhesion to matrix substrates, cell invasiveness, and metastatic ability. METHODS: The membrane and cytoskeleton modifications that occurred in ENO1-silenced (shENO1) PDA cells were investigated by a combination of confocal microscopy and atomic force microscopy (AFM). The effect of ENO1 silencing was then evaluated by phenotypic and functional experiments to identify the role of ENO1 in adhesion, migration, and invasion, as well as in senescence and apoptosis. The experimental results were then validated in a mouse model. RESULTS: We observed a significant increase in the roughness of the cell membrane due to ENO1 silencing, a feature associated with an impaired ability to migrate and invade, along with a significant downregulation of proteins involved in cell-cell and cell-matrix adhesion, including alpha v/beta 3 integrin in shENO1 PDA cells. These changes impaired the ability of shENO1 cells to adhere to Collagen I and IV and Fibronectin and caused an increase in RGD-independent adhesion to vitronectin (VN) via urokinase plasminogen activator receptor (uPAR). Binding of uPAR to VN triggers integrin-mediated signals, which result in ERK1-2 and RAC activation, accumulation of ROS, and senescence. In shENO1 cancer cells, the use of an anti-uPAR antibody caused significant reduction of ROS production and senescence. Overall, a decrease of in vitro and in vivo cell migration and invasion of shENO1 PDA cells was observed. CONCLUSION: These data demonstrate that ENO1 promotes PDA survival, migration, and metastasis through cooperation with integrins and uPAR.


Asunto(s)
Biomarcadores de Tumor/fisiología , Adhesión Celular , Proteínas de Unión al ADN/fisiología , Integrina alfaVbeta3/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Neoplasias Pancreáticas/patología , Fosfopiruvato Hidratasa/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Forma de la Célula , Senescencia Celular , Proteínas de Unión al ADN/genética , Expresión Génica , Silenciador del Gen , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Integrinas/fisiología , Ratones , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/metabolismo , Fosfopiruvato Hidratasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/fisiología , Proteínas Supresoras de Tumor/genética
18.
Mol Cell Oncol ; 3(2): e1083648, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27308605

RESUMEN

Human MENA(11a) (hMENA(11a)), an epithelial-associated isoform of the actin binding protein enabled homolog (ENAH, also known as mammalian ENA [MENA]), is upregulated and phosphorylated following the activation of human epidermal growth factor receptor (HER) 1, HER2, and HER3. Here, we reveal a novel role of this isoform in sustaining cell survival and propose hMENA(11a) as a marker of HER3 activation and resistance to phosphatidylinositol-3-kinase inhibition therapies.

19.
Oncoimmunology ; 5(12): e1221556, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28123868

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease in need of prognostic markers to address therapeutic choices. We have previously shown that alternative splicing of the actin regulator, hMENA, generates hMENA11a, and hMENAΔv6 isoforms with opposite roles in cell invasion. We examined the expression pattern of hMENA isoforms by immunohistochemistry, using anti-pan hMENA and specific anti-hMENA11a antibodies, in 285 PDACs, 15 PanINs, 10 pancreatitis, and normal pancreas. Pan hMENA immunostaining, absent in normal pancreas and low-grade PanINs, was weak in PanIN-3 and had higher levels in virtually all PDACs with 64% of cases showing strong staining. Conversely, the anti-invasive hMENA11a isoform only showed strong staining in 26% of PDAC. The absence of hMENA11a in a subset (34%) of pan-hMENA-positive tumors significantly correlated with poor outcome. The functional effects of hMENA isoforms were analyzed by loss and gain of function experiments in TGF-ß1-treated PDAC cell lines. hMENA11a knock-down in PDAC cell lines affected cell-cell adhesion but not invasion. TGF-ß1 cooperated with ß-catenin signaling to upregulate hMENA and hMENAΔv6 expression but not hMENA11a In the absence of hMENA11a, the hMENA/hMENAΔv6 up-regulation is crucial for SMAD2-mediated TGF-ß1 signaling and TGF-ß1-induced EMT. Since the hMENA isoform expression pattern correlates with patient outcome, the data suggest that hMENA splicing and related pathways are novel key players in pancreatic tumor microenvironment and may represent promising targets for the development of new prognostic and therapeutic tools in PDAC.

20.
J Immunother (1991) ; 24(3): 221-231, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11395637

RESUMEN

SUMMARY: The HER2 oncogene and its relative oncoprotein, gp185HER2, a transmembrane glycoprotein belonging to the epidermal growth factor receptor family, are overexpressed in a wide range of solid tumors including breast and ovarian cancer. In patients with breast cancer, both humoral and cell-mediated HER2 immune responses have been found as well as in some patients with gp185HER2 nonoverexpressing tumors. To establish whether peptide sequences identified as HLA-A2-restricted T-cell epitopes are expressed in breast tumor cell lines and tissues, we produced and characterized by different methodologic approaches polyclonal antibodies raised against four gp185HER2 peptides. Two of the antibodies recognized peptides eluted from the HLA-A2 groove of the mDAmB231 breast cancer cell line expressing a basal level of gp185HER2. Paraffin-embedded primary and metastatic breast tumors were specifically immunostained by all four reagents, thereby showing an overlapping reactivity. When this immunoreactivity was compared with that obtained using two different monoclonal antibodies, in 105 breast primary tumors and 36 corresponding lymph node metastases, we identified a subset of tumors that were negative with anti-gp185HER2 monoclonal antibodies and positive with the four antipeptide antibodies. Our novel observations provide in vivo evidence of the complexity involved in evaluating HER2 expression, and open a new path for understanding the biologic significance of HER2 status in breast tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA