Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108387

RESUMEN

Essential oils (EOs) are mixtures of volatile compounds belonging to several chemical classes derived from aromatic plants using different distillation techniques. Recent studies suggest that the consumption of Mediterranean plants, such as anise and laurel, contributes to improving the lipid and glycemic profile of patients with diabetes mellitus (DM). Hence, the aim of the present study was to investigate the potential anti-inflammatory effect of anise and laurel EOs (AEO and LEO) on endothelial cells isolated from the umbilical cord vein of females with gestational diabetes mellitus (GDM-HUVEC), which is a suitable in vitro model to reproduce the pro-inflammatory phenotype of a diabetic endothelium. For this purpose, the Gas Chromatographic/Mass Spectrometric (GC-MS) chemical profiles of AEO and LEO were first analyzed. Thus, GDM-HUVEC and related controls (C-HUVEC) were pre-treated for 24 h with AEO and LEO at 0.025% v/v, a concentration chosen among others (cell viability by MTT assay), and then stimulated with TNF-α (1 ng/mL). From the GC-MS analysis, trans-anethole (88.5%) and 1,8-cineole (53.9%) resulted as the major components of AEO and LEO, respectively. The results in C- and GDM-HUVEC showed that the treatment with both EOs significantly reduced: (i) the adhesion of the U937 monocyte to HUVEC; (ii) vascular adhesion molecule-1 (VCAM-1) protein and gene expression; (iii) Nuclear Factor-kappa B (NF-κB) p65 nuclear translocation. Taken together, these data suggest the anti-inflammatory efficacy of AEO and LEO in our in vitro model and lay the groundwork for further preclinical and clinical studies to study their potential use as supplements to mitigate vascular endothelial dysfunction associated with DM.


Asunto(s)
Diabetes Gestacional , Aceites Volátiles , Humanos , Embarazo , Femenino , Monocitos/metabolismo , Células Endoteliales/metabolismo , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/metabolismo , Células U937 , Adhesión Celular , FN-kappa B/metabolismo , Cordón Umbilical/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
2.
FASEB J ; 35(6): e21662, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34046935

RESUMEN

Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.


Asunto(s)
Antioxidantes/metabolismo , Senescencia Celular , Diabetes Gestacional/fisiopatología , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/patología , Modelos Biológicos , Estrés Oxidativo , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Embarazo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
J Cell Physiol ; 234(11): 19761-19773, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30937905

RESUMEN

Vascular calcification (VC) is an active and cell-mediated process that shares many common features with osteogenesis. Knowledge demonstrates that in the presence of risk factors, such as hypertension, vascular smooth muscle cells (vSMCs) lose their contractile phenotype and transdifferentiate into osteoblastic-like cells, contributing to VC development. Recently, menaquinones (MKs), also known as Vitamin K2 family, has been revealed to play an important role in cardiovascular health by decreasing VC. However, the MKs' effects and mechanisms potentially involved in vSMCs osteoblastic transdifferentiation are still unknown. The aim of this study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of MKs family, in the modulation of the vSMCs phenotype. To achieve this, vascular cells from spontaneously hypertensive rats (SHR) were used as an in vitro model of cell vascular dysfunction. vSMCs from Wistar Kyoto normotensive rats were used as control condition. The results showed that MK-4 preserves the contractile phenotype both in control and SHR-vSMCs through a γ-glutamyl carboxylase-dependent pathway, highlighting its capability to inhibit one of the mechanisms underlying VC process. Therefore, MK-4 may have an important role in the prevention of vascular dysfunction and atherosclerosis, encouraging further in-depth studies to confirm its use as a natural food supplement.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Osteogénesis/efectos de los fármacos , Vitamina K 2/análogos & derivados , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Presión Sanguínea/genética , Ligasas de Carbono-Carbono/genética , Proliferación Celular , Transdiferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Hipertensión/genética , Hipertensión/patología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Ratas , Ratas Endogámicas SHR , Transducción de Señal/efectos de los fármacos , Vitamina K 2/farmacología
4.
Cells ; 12(3)2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36766773

RESUMEN

Diabetes has been shown to accelerate vascular senescence, which is associated with chronic inflammation and oxidative stress, both implicated in the development of endothelial dysfunction. This condition represents the initial alteration linking diabetes to related cardiovascular (CV) complications. Recently, it has been hypothesised that the acetyltransferase, p300, may contribute to establishing an early vascular senescent phenotype, playing a relevant role in diabetes-associated inflammation and oxidative stress, which drive endothelial dysfunction. Specifically, p300 can modulate vascular inflammation through epigenetic mechanisms and transcription factors acetylation. Indeed, it regulates the inflammatory pathway by interacting with nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) or by inducing its acetylation, suggesting a crucial role of p300 as a bridge between NF-κB p65 and the transcriptional machinery. Additionally, p300-mediated epigenetic modifications could be upstream of the activation of inflammatory cytokines, and they may induce oxidative stress by affecting the production of reactive oxygen species (ROS). Because several in vitro and in vivo studies shed light on the potential use of acetyltransferase inhibitors, a better understanding of the mechanisms underlying the role of p300 in diabetic vascular dysfunction could help in finding new strategies for the clinical management of CV diseases related to diabetes.


Asunto(s)
Sistema Cardiovascular , Diabetes Mellitus , Humanos , Acetiltransferasas , Sistema Cardiovascular/metabolismo , Inflamación , FN-kappa B/metabolismo
5.
Adv Biol (Weinh) ; 7(9): e2300172, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37616517

RESUMEN

Type 2 diabetes (T2D) is a worldwide health problem and cardiovascular disease (CVD) is a leading cause of morbidity and mortality in T2D patients, making the prevention of CVD onset a major priority. It is therefore crucial to optimize diagnosis and treatment to reduce this burden. Endothelial dysfunction is one of the most important prognostic factors for CVD progression, thus novel approaches to identify the early phase of endothelial dysfunction may lead to specific preventive measures to reduce the occurrence of CVD. Nowadays, multiomics approaches have provided unprecedented opportunities to stratify T2D patients into endotypes, improve therapeutic treatment and outcome and amend the survival prediction. Among omics strategies, epigenetics and metabolomics are gaining increasing interest. Recently, a dynamic correlation between metabolic pathways and gene expression through chromatin remodeling, such as DNA methylation, has emerged, indicating new perspectives on the regulatory networks impacting cellular processes. Thus, a better understanding of epigenetic-metabolite relationships can provide insight into the physiological processes altered early in the endothelium that ultimately head to disease development. Here, recent studies on epigenetics and metabolomics related to CVD prevention potentially useful to identify disease biomarkers, as well as new therapies hopefully targeting the early phase of endothelial dysfunction are highlighted.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedades Vasculares , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Epigénesis Genética , Metabolómica
6.
Nutrients ; 14(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956385

RESUMEN

Bone physiology is regulated by osteoblast and osteoclast activities, both involved in the bone remodeling process, through deposition and resorption mechanisms, respectively. The imbalance between these two phenomena contributes to the onset of bone diseases. Among these, osteoporosis is the most common metabolic bone disorder. The therapies currently used for its treatment include antiresorptive and anabolic agents associated with side effects. Therefore, alternative therapeutic approaches, including natural molecules such as coumarin and their derivatives, have recently shown positive results. Thus, our proposal was to investigate the effect of the coumarin derivative umbelliferon (UF) using an interesting model of human osteoblasts (hOBs) isolated from osteoporotic patients. UF significantly improved the activity of osteoporotic-patient-derived hOBs via estrogen receptor 1 (ESR1) and the downstream activation of ß-catenin pathway. Additionally, hOBs were co-cultured in microgravity with human osteoclasts (hOCs) using a 3D system bioreactor, able to reproduce the bone remodeling unit in bone loss conditions in vitro. Notably, UF exerted its anabolic role by reducing the multinucleated cells. Overall, our study confirms the potential efficacy of UF in bone health, and identified, for the first time, a prospective alternative natural compound useful to prevent/treat bone loss diseases such as osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Receptor alfa de Estrógeno/metabolismo , Osteoporosis , Enfermedades Óseas Metabólicas/metabolismo , Resorción Ósea/tratamiento farmacológico , Calcificación Fisiológica , Diferenciación Celular , Cumarinas/uso terapéutico , Humanos , Osteoblastos , Osteoclastos , Osteogénesis , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Estudios Prospectivos , Vía de Señalización Wnt , beta Catenina/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166076, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33422633

RESUMEN

Childhood obesity is characterized by the loss of vascular insulin sensitivity along with altered oxidant-antioxidant state and chronic inflammation, which play a key role in the onset of endothelial dysfunction. We previously demonstrated a reduced insulin-stimulated Nitric Oxide (NO) bioavailability in Human Umbilical Vein Endothelial cells (HUVECs) cultured with plasma from obese pre-pubertal children (OB) compared to those cultured with plasma of normal-weight children (CTRL). However, mechanisms underlying endothelial dysfunction in childhood obesity remains poorly understood. Hence, the present study aimed to better investigate these mechanisms, also considering a potential involvement of mammalian Target Of Rapamycin Complex1 (mTORC1)-ribosomal protein S6 Kinase beta1 (S6K1) pathway. OB-children (N = 32, age: 9.2 ± 1.7; BMI z-score: 2.72 ± 0.31) had higher fasting insulin levels and increased HOMA-IR than CTRL-children (N = 32, age: 8.8 ± 1.2; BMI z-score: 0.33 ± 0.75). In vitro, HUVECs exposed to OB-plasma exhibited significant increase in Reactive Oxygen Species (ROS) levels, higher vascular and intercellular adhesion molecules exposure, together with increased monocytes-endothelial interaction. This was associated with unbalanced pro- and anti-atherogenic endothelial insulin stimulated signaling pathways, as measured by increased Mitogen Activated Protein Kinase (MAPK) and decreased Insulin Receptor Substrate-1 (IRS-1)/protein kinase B (Akt)/ endothelial NO Synthase (eNOS) phosphorylation levels, together with augmented S6K1 activation. Interestingly, inhibition of mTORC1-S6K1 pathway using rapamycin significantly restored the IRS-1/Akt/eNOS activation, suggesting a feedback regulation of IRS-1/Akt signal through S6K1. Overall, our in vitro data shed light on new mechanisms underlying the onset of endothelial dysfunction in childhood obesity.


Asunto(s)
Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Obesidad/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Adhesión Celular , Células Cultivadas , Niño , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Monocitos/metabolismo , Monocitos/patología , Obesidad/sangre , Obesidad/patología , Plasma/metabolismo
8.
PLoS One ; 13(8): e0202354, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30092054

RESUMEN

The potential role of calcimimetics as vasculotropic agents has been suggested since the discovery that calcium sensing receptors (CaSRs) are expressed in cardiovascular tissues. However, whether this effect is CaSR-dependent or -independent is still unclear. In the present study the vascular activity of calcimimetic R-568 was investigated in mesenteric vascular beds (MVBs) isolated from Spontaneously Hypertensive rats (SHR) and the relative age-matched Wistar-Kyoto (WKY) control rats. Pre-constricted MBVs were perfused with increasing concentrations of R-568 (10 nM- 30 µM) resulting in a rapid dose-dependent vasodilatation. However, in MVBs from SHR this was preceded by a small but significant vasoconstriction at lowest nanomolar concentrations used (10-300 nM). Pre-treatment with pharmacological inhibitors of nitric oxide (NO) synthase (NOS, L-NAME), KCa channels (CTX), cyclo-oxygenase (INDO) and CaSR (Calhex) or the endothelium removal suggest that NO, CaSR and the endothelium itself contribute to the R-568 vasodilatory/vasoconstrictor effects observed respectively in WKY/SHR MVBs. Conversely, the vasodilatory effects resulted by highest R-568 concentration were independent of these factors. Then, the ability of lower R-568 doses (0.1-1 µM) to activate endothelial-NOS (eNOS) pathway in MVBs homogenates was evaluated. The Akt and eNOS phosphorylation levels resulted increased in WKY homogenates and Calhex significantly blocked this effect. Notably, this did not occur in the SHR. Similarly, vascular smooth muscle cells (vSMCs) stimulation with lower R-568 doses resulted in Akt activation and increased NO production in WKY but not in SHR cells. Interestingly, in these cells this was associated with the absence of the biologically active dimeric form of the CaSR thus potentially contributing to explain the impaired vasorelaxant effect observed in response to R-568 in MVB from SHR compared to WKY. Overall, these findings provide new insight on the mechanisms of action of the calcimimetic R-568 in modulating vascular tone both in physiological and pathological conditions such as hypertension.


Asunto(s)
Hipertensión/tratamiento farmacológico , Arterias Mesentéricas/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Fenetilaminas/farmacología , Propilaminas/farmacología , Vasodilatadores/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiopatología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hipertensión/fisiopatología , Masculino , Arterias Mesentéricas/fisiopatología , Músculo Liso Vascular/fisiopatología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Sensibles al Calcio/antagonistas & inhibidores , Receptores Sensibles al Calcio/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA