RESUMEN
Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.
Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Interferón gamma/inmunología , Mycobacterium/inmunología , Proteínas de Dominio T Box/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Linaje de la Célula , Preescolar , Cromatina/metabolismo , Islas de CpG/genética , Metilación de ADN/genética , Células Dendríticas/metabolismo , Epigénesis Genética , Femenino , Homocigoto , Humanos , Mutación INDEL/genética , Lactante , Interferón gamma/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Infecciones por Mycobacterium/genética , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/microbiología , Linaje , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Linfocitos T Colaboradores-Inductores/inmunología , Transcriptoma/genéticaRESUMEN
An orchestrated cellular network, including adaptive lymphocytes and group 3 innate lymphoid cells (ILC3s), maintains intestinal barrier integrity and homeostasis. T cells can monitor environmental insults through constitutive circulation, scanning tissues and forming immunological contacts, a process named immunosurveillance. In contrast, the dynamics of intestinal ILC3s are unknown. Using intravital imaging, we observed that villus ILC3s were largely immotile at steady state but acquired migratory 'patrolling' attributes and enhanced cytokine expression in response to inflammation. We showed that T cells, the chemokine CCL25 and bacterial ligands regulated intestinal ILC3 behavior and that loss of patrolling behavior by interleukin-22 (IL-22)-producing ILC3s altered the intestinal barrier through increased epithelial cell death. Collectively, we identified notable differences between the behavior of ILC3s and T cells, with a prominent adaptation of intestinal ILC3s toward mucosal immunosurveillance after inflammation.
Asunto(s)
Inmunidad Innata , Linfocitos , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Mucosa Intestinal , LigandosRESUMEN
Group 2 innate lymphoid cells (ILC2s) represent innate homologs of type 2 helper T cells (TH2) that participate in immune defense and tissue homeostasis through production of type 2 cytokines. While T lymphocytes metabolically adapt to microenvironmental changes, knowledge of human ILC2 metabolism is limited, and its key regulators are unknown. Here, we show that circulating 'naive' ILC2s have an unexpected metabolic profile with a higher level of oxidative phosphorylation (OXPHOS) than natural killer (NK) cells. Accordingly, ILC2s are severely reduced in individuals with mitochondrial disease (MD) and impaired OXPHOS. Metabolomic and nutrient receptor analysis revealed ILC2 uptake of amino acids to sustain OXPHOS at steady state. Following activation with interleukin-33 (IL-33), ILC2s became highly proliferative, relying on glycolysis and mammalian target of rapamycin (mTOR) to produce IL-13 while continuing to fuel OXPHOS with amino acids to maintain cellular fitness and proliferation. Our results suggest that proliferation and function are metabolically uncoupled in human ILC2s, offering new strategies to target ILC2s in disease settings.
Asunto(s)
Proliferación Celular , Citocinas/metabolismo , Metabolismo Energético , Inmunidad Innata , Activación de Linfocitos , Enfermedades Mitocondriales/metabolismo , Células Th2/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Arginina/metabolismo , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Interleucina-33/farmacología , Activación de Linfocitos/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/inmunología , Fenotipo , Células Th2/efectos de los fármacos , Células Th2/inmunologíaRESUMEN
Coordinated local mucosal and systemic immune responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection either protect against coronavirus disease 2019 (COVID-19) pathologies or fail, leading to severe clinical outcomes. To understand this process, we performed an integrated analysis of SARS-CoV-2 spike-specific antibodies, cytokines, viral load and bacterial communities in paired nasopharyngeal swabs and plasma samples from a cohort of clinically distinct patients with COVID-19 during acute infection. Plasma viral load was associated with systemic inflammatory cytokines that were elevated in severe COVID-19, and also with spike-specific neutralizing antibodies. By contrast, nasopharyngeal viral load correlated with SARS-CoV-2 humoral responses but inversely with interferon responses, the latter associating with protective microbial communities. Potential pathogenic microorganisms, often implicated in secondary respiratory infections, were associated with mucosal inflammation and elevated in severe COVID-19. Our results demonstrate distinct tissue compartmentalization of SARS-CoV-2 immune responses and highlight a role for the nasopharyngeal microbiome in regulating local and systemic immunity that determines COVID-19 clinical outcomes.
Asunto(s)
COVID-19/inmunología , Microbiota/inmunología , Nasofaringe/inmunología , SARS-CoV-2/fisiología , Enfermedad Aguda , Adolescente , Adulto , Anciano , Anticuerpos Antivirales/sangre , Estudios de Cohortes , Femenino , Humanos , Inmunidad Humoral , Inmunidad Mucosa , Interferones/sangre , Masculino , Persona de Mediana Edad , Nasofaringe/microbiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral , Adulto JovenRESUMEN
Innate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified antigen receptors expressed on T cells and B cells. ILCs are largely tissue-resident cells and are deeply integrated into the fabric of tissues. The discovery and investigation of ILCs over the past decade has changed our perception of immune regulation and how the immune system contributes to the maintenance of tissue homeostasis. We now know that cytokine-producing ILCs contribute to multiple immune pathways by, for example, sustaining appropriate immune responses to commensals and pathogens at mucosal barriers, potentiating adaptive immunity, and regulating tissue inflammation. Critically, the biology of ILCs also extends beyond classical immunology to metabolic homeostasis, tissue remodeling, and dialog with the nervous system. The last 10 years have also contributed to our greater understanding of the transcriptional networks that regulate lymphocyte commitment and delineation. This, in conjunction with the recent advances in our understanding of the influence of local tissue microenvironments on the plasticity and function of ILCs, has led to a re-evaluation of their existing categorization. In this review, we distill the advances in ILC biology over the past decade to refine the nomenclature of ILCs and highlight the importance of ILCs in tissue homeostasis, morphogenesis, metabolism, repair, and regeneration.
Asunto(s)
Inmunidad Adaptativa/fisiología , Inmunidad Innata , Linfocitos/citología , Animales , Linfocitos B/inmunología , Citocinas/inmunología , Homeostasis , Humanos , Sistema Hipotálamo-Hipofisario , Inflamación/inmunología , Células Asesinas Naturales/citología , Ratones , Fenotipo , Sistema Hipófiso-Suprarrenal , Regeneración , Linfocitos T/inmunologíaRESUMEN
Innate lymphoid cells (ILCs) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCPs). How ILCPs give rise to mature tissue-resident ILCs remains unclear. Here, we identify circulating and tissue ILCPs in humans that fail to express the transcription factors and cytokine outputs of mature ILCs but have these signature loci in an epigenetically poised configuration. Human ILCPs robustly generate all ILC subsets in vitro and in vivo. While human ILCPs express low levels of retinoic acid receptor (RAR)-related orphan receptor C (RORC) transcripts, these cells are found in RORC-deficient patients and retain potential for EOMES+ natural killer (NK) cells, interferon gamma-positive (IFN-γ+) ILC1s, interleukin (IL)-13+ ILC2s, and for IL-22+, but not for IL-17A+ ILC3s. Our results support a model of tissue ILC differentiation ("ILC-poiesis"), whereby diverse ILC subsets are generated in situ from systemically distributed ILCPs in response to local environmental signals.
Asunto(s)
Linfocitos/citología , Células Madre/citología , Animales , Antígenos CD34/análisis , Diferenciación Celular , Linaje de la Célula , Sangre Fetal/citología , Feto/citología , Humanos , Inmunidad Innata , Interleucina-17 , Hígado/citología , Pulmón/citología , Linfocitos/inmunología , Tejido Linfoide/citología , Ratones , Proteínas Proto-Oncogénicas c-kit/análisis , Transcripción GenéticaRESUMEN
Innate lymphoid cells (ILCs) are critical modulators of mucosal immunity, inflammation, and tissue homeostasis, but their full spectrum of cellular states and regulatory landscapes remains elusive. Here, we combine genome-wide RNA-seq, ChIP-seq, and ATAC-seq to compare the transcriptional and epigenetic identity of small intestinal ILCs, identifying thousands of distinct gene profiles and regulatory elements. Single-cell RNA-seq and flow and mass cytometry analyses reveal compartmentalization of cytokine expression and metabolic activity within the three classical ILC subtypes and highlight transcriptional states beyond the current canonical classification. In addition, using antibiotic intervention and germ-free mice, we characterize the effect of the microbiome on the ILC regulatory landscape and determine the response of ILCs to microbial colonization at the single-cell level. Together, our work characterizes the spectrum of transcriptional identities of small intestinal ILCs and describes how ILCs differentially integrate signals from the microbial microenvironment to generate phenotypic and functional plasticity.
Asunto(s)
Microbioma Gastrointestinal , Inmunidad Innata/genética , Intestinos/inmunología , Intestinos/microbiología , Linfocitos/inmunología , Linfocitos/microbiología , Animales , Secuencia de Bases , Cromatina/metabolismo , Citocinas/inmunología , Epigénesis Genética , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula Individual , Transcripción GenéticaRESUMEN
In the version of this article initially published, the name of one author was incorrect (James P. Santo). The correct name is James P. Di Santo. The error has been corrected in the HTML and PDF versions of the article.
RESUMEN
The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.
Asunto(s)
Variación Genética/inmunología , Inmunidad Innata/genética , Inmunidad Adaptativa/genética , Adulto , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The intestinal microbiota shapes and directs immune development locally and systemically, but little is known about whether commensal microbes in the stomach can impact their immunological microenvironment. Here, we report that group 2 innate lymphoid cells (ILC2s) were the predominant ILC subset in the stomach and show that their homeostasis and effector functions were regulated by local commensal communities. Microbes elicited interleukin-7 (IL-7) and IL-33 production in the stomach, which in turn triggered the propagation and activation of ILC2. Stomach ILC2s were also rapidly induced following infection with Helicobacter pylori. ILC2-derived IL-5 resulted in the production of IgA, which coated stomach bacteria in both specific pathogen-free (SPF) and H. pylori-infected mice. Our study thus identifies ILC2-dependent IgA response that is regulated by the commensal microbiota, which is implicated in stomach protection by eliminating IgA-coated bacteria including pathogenic H. pylori.
Asunto(s)
Microbioma Gastrointestinal/inmunología , Infecciones por Helicobacter/inmunología , Helicobacter pylori/patogenicidad , Inmunoglobulina A/biosíntesis , Interleucina-5/inmunología , Estómago/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Femenino , Regulación de la Expresión Génica , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/crecimiento & desarrollo , Helicobacter pylori/inmunología , Inmunidad Humoral , Inmunidad Innata , Interleucina-33/genética , Interleucina-33/inmunología , Interleucina-5/genética , Interleucina-7/genética , Interleucina-7/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Transducción de Señal , Estómago/microbiología , Simbiosis/inmunología , Subgrupos de Linfocitos T/clasificaciónRESUMEN
Innate lymphoid cell (ILC) development proposes that ILC precursors (ILCPs) segregate along natural killer (NK) cell versus helper cell (ILC1, ILC2, ILC3) pathways, the latter depending on expression of Id2, Zbtb16, and Gata3. We have developed an Id2-reporter strain expressing red fluorescent protein (RFP) in the context of normal Id2 expression to re-examine ILCP phenotype and function. We show that bone-marrow ILCPs were heterogeneous and harbored extensive NK-cell potential in vivo and in vitro. By multiplexing Id2RFP with Zbtb16CreGFP and Bcl11btdTomato strains, we made a single-cell dissection of the ILCP compartment. In contrast with the current model, we have demonstrated that Id2+Zbtb16+ ILCPs included multi-potent ILCPs that retained NK-cell potential. Late-stage ILC2P and ILC3P compartments could be defined by differential Zbtb16 and Bcl11b expression. We suggest a revised model for ILC differentiation that redefines the cell-fate potential of helper-ILC-restricted Zbtb16+ ILCPs.
Asunto(s)
Regulación de la Expresión Génica/inmunología , Células Madre Hematopoyéticas/citología , Inmunidad Innata , Proteína 2 Inhibidora de la Diferenciación/genética , Linfopoyesis/genética , Traslado Adoptivo , Animales , Linaje de la Célula , Factor de Transcripción GATA3/biosíntesis , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/fisiología , Genes Reporteros , Células Madre Hematopoyéticas/metabolismo , Proteína 2 Inhibidora de la Diferenciación/biosíntesis , Células Asesinas Naturales/citología , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Modelos Inmunológicos , Proteína de la Leucemia Promielocítica con Dedos de Zinc/biosíntesis , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/fisiología , Análisis de la Célula Individual , Linfocitos T Colaboradores-Inductores/citología , Transcripción Genética , Proteína Fluorescente RojaRESUMEN
Group 3 innate lymphoid cells (ILC3s) are tissue-resident immune lymphocytes that critically regulate intestinal homeostasis, organogenesis, and immunity. ILC3s possess the capacity to "sense" the inflammatory environment within tissues, especially in the context of pathogen challenges that imprints durable non-antigen-specific changes in ILC3 function. As such, ILC3s become a new actor in the emerging field of trained innate immunity. Here, we summarize recent discoveries regarding ILC3 responses to bacterial challenges and the role these encounters play in triggering trained innate immunity. We further discuss how signaling events throughout ILC3 ontogeny potentially control the development and function of trained ILC3s. Finally, we highlight the open questions surrounding ILC3 "training" the answers to which may reveal new insights into innate immunity. Understanding the fundamental concepts behind trained innate immunity could potentially lead to the development of new strategies for improving immunity-based modulation therapies for inflammation, infectious diseases, and cancer.
Asunto(s)
Inmunidad Innata , Linfocitos , Transducción de Señal , Humanos , Animales , Linfocitos/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Homeostasis , Inflamación/inmunología , Microbioma Gastrointestinal/inmunología , Intestinos/inmunologíaRESUMEN
Innate lymphoid cells (ILCs) and natural killer (NK) cells have garnered considerable interest due to their unique functional properties in immune defense and tissue homeostasis. Our current understanding of how these cells develop has been greatly facilitated by knowledge of T cell biology. Models of T cell differentiation provided the basis for a conceptual classification of these innate effectors and inspired a scheme of their activation and regulation. In this review, we discuss NK cell and ILC development from a "T cell standpoint" in an attempt to extend the analogy between adaptive T cells and their innate ILC and NK cell counterparts.
Asunto(s)
Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Animales , Diferenciación Celular/inmunología , Humanos , Inmunidad Innata/inmunología , Células Asesinas Naturales/citología , Linfocitos/citología , Linfocitos T/inmunologíaRESUMEN
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.
Asunto(s)
Antineoplásicos , Factor de Transcripción STAT5 , Humanos , Inmunidad Innata , Diferenciación Celular , Células Asesinas Naturales , Inflamación , Factor de Transcripción STAT4/genéticaRESUMEN
The nature of gut intraepithelial lymphocytes (IELs) lacking antigen receptors remains controversial. Herein we showed that, in humans and in mice, innate intestinal IELs expressing intracellular CD3 (iCD3(+)) differentiate along an Id2 transcription factor (TF)-independent pathway in response to TF NOTCH1, interleukin-15 (IL-15), and Granzyme B signals. In NOTCH1-activated human hematopoietic precursors, IL-15 induced Granzyme B, which cleaved NOTCH1 into a peptide lacking transcriptional activity. As a result, NOTCH1 target genes indispensable for T cell differentiation were silenced and precursors were reprogrammed into innate cells with T cell marks including intracellular CD3 and T cell rearrangements. In the intraepithelial lymphoma complicating celiac disease, iCD3(+) innate IELs acquired gain-of-function mutations in Janus kinase 1 or Signal transducer and activator of transcription 3, which enhanced their response to IL-15. Overall we characterized gut T cell-like innate IELs, deciphered their pathway of differentiation and showed their malignant transformation in celiac disease.
Asunto(s)
Enfermedad Celíaca/inmunología , Interleucina-15/inmunología , Intestinos/inmunología , Linfoma/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Complejo CD3/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Granzimas/inmunología , Humanos , Proteína 2 Inhibidora de la Diferenciación/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor Notch1/inmunología , Factor de Transcripción STAT3/inmunología , Transducción de Señal/inmunología , Transcripción Genética/inmunologíaRESUMEN
Human immune system (HIS) mice provide a model to study human immune responses in vivo. Currently available HIS mouse models may harbor mouse Fc Receptor (FcR)-expressing cells that exert potent effector functions following administration of human Ig. Previous studies showed that the ablation of the murine FcR gamma chain (FcR-γ) results in loss of antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis in vivo. We created a new FcR-γ-deficient HIS mouse model to compare host (mouse) versus graft (human) effects underlying antibody-mediated immune responses in vivo. FcR-γ-deficient HIS recipients lack expression and function of mouse activating FcRs and can be stably and robustly reconstituted with human immune cells. By screening blood B-cell depletion by rituximab Ig variants, we found that human FcγRs-mediated IgG1 effects, whereas mouse activating FcγRs were dominant in IgG4 effects. Complement played a role as an IgG1 variant (IgG1 K322A) lacking complement binding activity was largely ineffective. Finally, we provide evidence that FcγRIIIA on human NK cells could mediate complement-independent B-cell depletion by IgG1 K322A. We anticipate that our FcR-γ-deficient HIS model will help clarify mechanisms of action of exogenous administered human antibodies in vivo.
Asunto(s)
Receptores Fc , Receptores de IgG , Humanos , Ratones , Animales , Receptores de IgG/genética , Inmunoglobulina G , Citotoxicidad Celular Dependiente de Anticuerpos , Macrófagos , Proteínas del Sistema Complemento , Inmunidad AdaptativaRESUMEN
Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.
Asunto(s)
Inmunodeficiencia Combinada Grave , Disbiosis , Humanos , Inmunidad Innata , Inmunidad Mucosa , Inmunoglobulina A , Subunidad gamma Común de Receptores de Interleucina/genética , Janus Quinasa 3/genética , Linfocitos/metabolismo , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapiaRESUMEN
Natural killer (NK) cells are innate effectors armed with cytotoxic and cytokine-secreting capacities whose spontaneous antitumor activity is key to numerous immunotherapeutic strategies. However, current mouse models fail to mirror the extensive immune system variation that exists in the human population which may impact on NK cell-based therapies. We performed a comprehensive profiling of NK cells in the Collaborative Cross (CC), a collection of novel recombinant inbred mouse strains whose genetic diversity matches that of humans, thereby providing a unique and highly diverse small animal model for the study of immune variation. We demonstrate that NK cells from CC strains displayed a breadth of phenotypic and functional variation reminiscent of that reported for humans with regards to cell numbers, key marker expression, and functional capacities. We took advantage of the vast genetic diversity of the CC and identified nine genomic loci through quantitative trait locus mapping driving these phenotypic variations. SNP haplotype patterns and variant effect analyses identified candidate genes associated with lung NK cell numbers, frequencies of CD94+ NK cells, and expression levels of NKp46. Thus, we demonstrate that the CC represents an outstanding resource to study NK cell diversity and its regulation by host genetics.
Asunto(s)
Antígenos Ly , Regulación de la Expresión Génica/inmunología , Células Asesinas Naturales/inmunología , Subfamília D de Receptores Similares a Lectina de las Células NK , Receptor 1 Gatillante de la Citotoxidad Natural , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/inmunología , Animales , Antígenos Ly/genética , Antígenos Ly/inmunología , Cruzamientos Genéticos , Ratones , Ratones Endogámicos , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/inmunologíaRESUMEN
The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.
Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Nucleocápside/análisis , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Cricetinae , Electroforesis en Gel de Poliacrilamida , Humanos , Límite de Detección , Proteínas de la Nucleocápside/inmunologíaRESUMEN
Research has identified what can be considered a family of innate lymphoid cells (ILCs) that includes not only natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells but also cells that produce interleukin 5 (IL-5), IL-13, IL-17 and/or IL-22. These ILC subsets are developmentally related, requiring expression of the transcriptional repressor Id2 and cytokine signals through the common γ-chain of the IL-2 receptor. The functional differentiation of ILC subsets is orchestrated by distinct transcription factors. Analogous to helper T cell subsets, these evolutionarily conserved yet distinct ILCs seem to have important roles in protective immunity, and their dysregulation can promote immune pathology.