Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 72(2): 397-408, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35907015

RESUMEN

Checkpoint blockade immunotherapy has become a first-line treatment option for cancer patients, with success in increasingly diverse cancer types. Still, many patients do not experience durable responses and the reasons for clinical success versus failure remain largely undefined. Investigation of immune responses within the tumor microenvironment can be highly informative but access to tumor tissue is not always available, highlighting the need to identify biomarkers in the blood that correlate with clinical success. Here, we used single-cell RNA sequencing coupled with T cell receptor sequencing to define CD8+ T cell responses in peripheral blood of two patients with melanoma before and after immunotherapy with either anti-PD-1 (nivolumab) alone or the combination of anti-PD-1 and CTLA-4 (ipilimumab). Both treatment regimens increased transcripts associated with cytolytic effector function and decreased transcripts associated with naive T cells. These responses were further evaluated at the protein level and extended to a total of 53 patients with various cancer types. Unexpectedly, the induction of CD8+ T cell responses associated with cytolytic function was variable and did not predict therapeutic success in this larger patient cohort. Rather, a decrease in the frequency of T cells with a naive-like phenotype was consistently observed after immunotherapy and correlated with prolonged patient survival. In contrast, a more detailed clonotypic analysis of emerging and expanding CD8+ T cells in the blood revealed that a majority of individual T cell clones responding to immunotherapy acquired a transcriptional profile consistent with cytolytic effector function. These results suggest that responses to checkpoint blockade immunotherapy are evident and traceable in patients' blood, with outcomes predicted by the simultaneous loss of naive-like CD8+ T cells and the expansion of mostly rare and diverse cytotoxic CD8+ T cell clones.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/metabolismo , Inmunoterapia/métodos , Análisis de la Célula Individual , Microambiente Tumoral
2.
Infect Immun ; 89(7): e0073820, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33941576

RESUMEN

Trypanosoma cruzi is the intracellular parasite of Chagas disease, a chronic condition characterized by cardiac and gastrointestinal morbidity. Protective immunity requires CD4+ T cells, and Th1 cells and gamma interferon (IFN-γ) are important players in host defense. More recently, Th17 cells and interleukin 17A (IL-17A) have been shown to exert protective functions in systemic T. cruzi infection. However, it remains unclear whether Th17 cells and IL-17A protect in the mucosa, the initial site of parasite invasion in many human cases. We found that IL-17RA knockout (KO) mice are highly susceptible to orogastric infection, indicating an important function for this cytokine in mucosal immunity to T. cruzi. To investigate the specific role of Th17 cells for mucosal immunity, we reconstituted RAG1 KO mice with T. cruzi-specific T cell receptor transgenic Th17 cells prior to orogastric T. cruzi challenges. We found that Th17 cells provided protection against gastric mucosal T. cruzi infection, indicated by significantly lower stomach parasite burdens. In vitro macrophage infection assays revealed that protection by Th17 cells is reduced with IL-17A neutralization or reversed by loss of macrophage NADPH oxidase activity. Consistently with this, mice lacking functional NADPH oxidase were not protected by Th17 cell transfer. These data are the first report that Th17 cells protect against mucosal T. cruzi infection and identify a novel protective mechanism involving the induction of NADPH oxidase activity by IL-17A. These studies provide important insights for Chagas vaccine development and, more broadly, increase our understanding of the diverse roles of Th17 cells in host defense.


Asunto(s)
Enfermedad de Chagas/inmunología , Mucosa Gástrica/inmunología , Mucosa Gástrica/parasitología , Interacciones Huésped-Parásitos/inmunología , Inmunidad Mucosa , Células Th17/inmunología , Trypanosoma cruzi/inmunología , Animales , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Modelos Animales de Enfermedad , Interleucina-17/genética , Interleucina-17/metabolismo , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Ratones Noqueados , NADPH Oxidasas/metabolismo , Células Th17/metabolismo
3.
Gastroenterology ; 159(6): 2116-2129.e4, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32835664

RESUMEN

BACKGROUND & AIMS: Chronic atrophic gastritis can lead to gastric metaplasia and increase risk of gastric adenocarcinoma. Metaplasia is a precancerous lesion associated with an increased risk for carcinogenesis, but the mechanism(s) by which inflammation induces metaplasia are poorly understood. We investigated transcriptional programs in mucous neck cells and chief cells as they progress to metaplasia mice with chronic gastritis. METHODS: We analyzed previously generated single-cell RNA-sequencing (scRNA-seq) data of gastric corpus epithelium to define transcriptomes of individual epithelial cells from healthy BALB/c mice (controls) and TxA23 mice, which have chronically inflamed stomachs with metaplasia. Chronic gastritis was induced in B6 mice by Helicobacter pylori infection. Gastric tissues from mice and human patients were analyzed by immunofluorescence to verify findings at the protein level. Pseudotime trajectory analysis of scRNA-seq data was used to predict differentiation of normal gastric epithelium to metaplastic epithelium in chronically inflamed stomachs. RESULTS: Analyses of gastric epithelial transcriptomes revealed that gastrokine 3 (Gkn3) mRNA is a specific marker of mouse gastric corpus metaplasia (spasmolytic polypeptide expressing metaplasia, SPEM). Gkn3 mRNA was undetectable in healthy gastric corpus; its expression in chronically inflamed stomachs (from TxA23 mice and mice with Helicobacter pylori infection) identified more metaplastic cells throughout the corpus than previously recognized. Staining of healthy and diseased human gastric tissue samples paralleled these results. Although mucous neck cells and chief cells from healthy stomachs each had distinct transcriptomes, in chronically inflamed stomachs, these cells had distinct transcription patterns that converged upon a pre-metaplastic pattern, which lacked the metaplasia-associated transcripts. Finally, pseudotime trajectory analysis confirmed the convergence of mucous neck cells and chief cells into a pre-metaplastic phenotype that ultimately progressed to metaplasia. CONCLUSIONS: In analyses of tissues from chronically inflamed stomachs of mice and humans, we expanded the definition of gastric metaplasia to include Gkn3 mRNA and GKN3-positive cells in the corpus, allowing a more accurate assessment of SPEM. Under conditions of chronic inflammation, chief cells and mucous neck cells are plastic and converge into a pre-metaplastic cell type that progresses to metaplasia.


Asunto(s)
Células Principales Gástricas/patología , Gastritis Atrófica/inmunología , Infecciones por Helicobacter/inmunología , Lesiones Precancerosas/diagnóstico , Neoplasias Gástricas/prevención & control , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Carcinogénesis/genética , Carcinogénesis/inmunología , Proteínas Portadoras/análisis , Proteínas Portadoras/metabolismo , Células Principales Gástricas/inmunología , Modelos Animales de Enfermedad , Femenino , Gastritis Atrófica/microbiología , Gastritis Atrófica/patología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/inmunología , Humanos , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Metaplasia/diagnóstico , Metaplasia/genética , Metaplasia/inmunología , Metaplasia/patología , Ratones , Lesiones Precancerosas/genética , Lesiones Precancerosas/inmunología , Lesiones Precancerosas/patología , RNA-Seq , Análisis de la Célula Individual , Neoplasias Gástricas/patología
4.
Gut ; 69(6): 1027-1038, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31481545

RESUMEN

OBJECTIVE: Spasmolytic polypeptide-expressing metaplasia (SPEM) is a regenerative lesion in the gastric mucosa and is a potential precursor to intestinal metaplasia/gastric adenocarcinoma in a chronic inflammatory setting. The goal of these studies was to define the transcriptional changes associated with SPEM at the individual cell level in response to acute drug injury and chronic inflammatory damage in the gastric mucosa. DESIGN: Epithelial cells were isolated from the gastric corpus of healthy stomachs and stomachs with drug-induced and inflammation-induced SPEM lesions. Single cell RNA sequencing (scRNA-seq) was performed on tissue samples from each of these settings. The transcriptomes of individual epithelial cells from healthy, acutely damaged and chronically inflamed stomachs were analysed and compared. RESULTS: scRNA-seq revealed a population Mucin 6 (Muc6)+gastric intrinsic factor (Gif)+ cells in healthy tissue, but these cells did not express transcripts associated with SPEM. Furthermore, analyses of SPEM cells from drug injured and chronically inflamed corpus yielded two major findings: (1) SPEM and neck cell hyperplasia/hypertrophy are nearly identical in the expression of SPEM-associated transcripts and (2) SPEM programmes induced by drug-mediated parietal cell ablation and chronic inflammation are nearly identical, although the induction of transcripts involved in immunomodulation was unique to SPEM cells in the chronic inflammatory setting. CONCLUSIONS: These data necessitate an expansion of the definition of SPEM to include Tff2+Muc6+ cells that do not express mature chief cell transcripts such as Gif. Our data demonstrate that SPEM arises by a highly conserved cellular programme independent of aetiology and develops immunoregulatory capabilities in a setting of chronic inflammation.


Asunto(s)
Mucosa Gástrica/metabolismo , Gastritis/inducido químicamente , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Gastritis/metabolismo , Gastritis/patología , Perfilación de la Expresión Génica , Hibridación in Situ , Masculino , Metaplasia/inducido químicamente , Metaplasia/metabolismo , Ratones , Ratones Endogámicos BALB C , Mucina 6/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Tamoxifeno/farmacología , Factor Trefoil-2/metabolismo
5.
PLoS Pathog ; 14(9): e1007237, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30212537

RESUMEN

Zika virus (ZIKV) has gained worldwide attention since it emerged, and a global effort is underway to understand the correlates of protection and develop diagnostics to identify rates of infection. As new therapeutics and vaccine approaches are evaluated in clinical trials, additional effort is focused on identifying the adaptive immune correlates of protection against ZIKV disease. To aid in this endeavor we have begun to dissect the role of CD4+T cells in the protection against neuroinvasive ZIKV disease. We have identified an important role for CD4+T cells in protection, demonstrating that in the absence of CD4+T cells mice have more severe neurological sequela and significant increases in viral titers in the central nervous system (CNS). The transfer of CD4+T cells from ZIKV immune mice protect type I interferon receptor deficient animals from a lethal challenge; showing that the CD4+T cell response is necessary and sufficient for control of ZIKV disease. Using a peptide library spanning the complete ZIKV polyprotein, we identified both ZIKV-encoded CD4+T cell epitopes that initiate immune responses, and ZIKV specific CD4+T cell receptors that recognize these epitopes. Within the ZIKV antigen-specific TCRß repertoire, we uncovered a high degree of diversity both in response to a single epitope and among different mice responding to a CD4+T cell epitope. Overall this study identifies a novel role for polyfunctional and polyclonal CD4+T cells in providing protection against ZIKV infection and highlights the need for vaccines to develop robust CD4+T cell responses to prevent ZIKV neuroinvasion and limit replication within the CNS.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Traslado Adoptivo , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Humanos , Inmunidad Celular , Hígado/inmunología , Hígado/virología , Depleción Linfocítica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Vacunas Virales/inmunología , Replicación Viral/inmunología , Virus Zika/genética , Virus Zika/inmunología , Virus Zika/patogenicidad , Infección por el Virus Zika/genética
6.
J Pathol ; 247(4): 513-523, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30511397

RESUMEN

Chronic inflammation of the gastric mucosa, often caused by autoimmune gastritis and/or infection with Helicobacter pylori, can lead to atrophy of acid-secreting parietal cells with metaplasia of remaining cells. The histological pattern marks a critical step in the progression from chronic gastritis to gastric cancer, yet underlying mechanism(s) of inflammation-induced cell death of gastric epithelial cells are poorly understood. We investigated direct effects of a type 1 cytokine associated with autoimmunity and infection, interferon-γ (IFN-γ), on gastric epithelial cells. IFN-γ was applied to three-dimensional organoid cultures of gastric epithelial cells derived from gastric corpus gland (gastroids) of control and IFN-γ receptor-deficient mice. Gastroids were also treated with supernatants from activated immune cells isolated from a mouse model of autoimmune-mediated atrophic gastritis (TxA23) with and without IFN-γ expression. Finally, histopathological analysis of atrophy and metaplasia severity was performed in TxA23 mice and compared to TxA23 × Ifng-/- mice. Gastric epithelial cells in gastroid cultures expressed IFN-γ receptor in the basolateral membrane, and gastroids died when treated with IFN-γ in an IFN-γ receptor-dependent manner. Supernatants from immune cells containing high levels of IFN-γ were highly toxic to gastroids, and toxicity was tempered when IFN-γ was either neutralized using a monoclonal antibody or when supernatants from Ifng-/- mouse immune cells were used. Finally, TxA23 × Ifng-/- mice showed near-complete abrogation of pre-cancerous histopathological atrophy and metaplasia versus IFN-γ-sufficient controls. We identify IFN-γ as a critical promoter of parietal cell atrophy with metaplasia during the progression of gastritis to gastric atrophy and metaplasia. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Mucosa Gástrica/patología , Interferón gamma/fisiología , Neoplasias Gástricas/patología , Animales , Atrofia/patología , Muerte Celular/fisiología , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Células Epiteliales/patología , Gastritis , Interferón gamma/deficiencia , Interferón gamma/farmacología , Metaplasia/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Parietales Gástricas/patología , Células Tumorales Cultivadas
7.
Cancer Immunol Immunother ; 68(7): 1095-1106, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31104075

RESUMEN

Checkpoint blockade immunotherapy is now a first-line treatment option for patients with melanoma. Despite achieving objective responses in about half of patients, the exact immune mechanisms elicited and those required for therapeutic success have not been clearly identified. Insight into these mechanisms is key for improving outcomes in a broader range of cancer patients. We used a murine melanoma model to track responses by different subsets of tumor-infiltrating lymphocytes (TIL) during checkpoint blockade immunotherapy. Tumors from treated mice had increased frequencies of both CD4+ and CD8+ T cells, which also showed evidence of functional reinvigoration and elevated effector cytokine production after immunotherapy. We predicted that increased T cell numbers and function within tumors reflected either infiltration by new T cells or clonal expansion by a few high-affinity tumor-reactive T cells. To address this, we compared TIL diversity before and after immunotherapy by sequencing the complementarity determining region 3 (CDR3) of all T cell receptor beta (TCRß) genes. While checkpoint blockade effectively slowed tumor progression and increased T cell frequencies, the diversity of intratumoral T cells remained stable. This was true when analyzing total T cells and when focusing on smaller subsets of effector CD4+ and CD8+ TIL as well as regulatory T cells. Our study suggests that checkpoint blockade immunotherapy does not broaden the T cell repertoire within murine melanoma tumors, but rather expands existing T cell populations and enhances effector capabilities.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Regiones Determinantes de Complementariedad/genética , Humanos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
8.
Int J Mol Sci ; 19(4)2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29642375

RESUMEN

The ability to analyze individual epithelial cells in the gastric mucosa would provide important insight into gastric disease, including chronic gastritis and progression to gastric cancer. However, the successful isolation of viable gastric epithelial cells (parietal cells, neck cells, chief cells, and foveolar cells) from gastric glands has been limited due to difficulties in tissue processing. Furthermore, analysis and interpretation of gastric epithelial cell flow cytometry data has been difficult due to the varying sizes and light scatter properties of the different epithelial cells, high levels of autofluorescence, and poor cell viability. These studies were designed to develop a reliable method for isolating viable single cells from the corpus of stomachs and to optimize analyses examining epithelial cells from healthy and diseased stomach tissue by flow cytometry. We performed a two stage enzymatic digestion in which collagenase released individual gastric glands from the stromal tissue of the corpus, followed by a Dispase II digestion that dispersed these glands into greater than 1 × 106 viable single cells per gastric corpus. Single cell suspensions were comprised of all major cell lineages found in the normal gastric glands. A method describing light scatter, size exclusion, doublet discrimination, viability staining, and fluorescently-conjugated antibodies and lectins was used to analyze individual epithelial cells and immune cells. This technique was capable of identifying parietal cells and revealed that gastric epithelial cells in the chronically inflamed mucosa significantly upregulated major histocompatibility complexes (MHC) I and II but not CD80 or CD86, which are costimulatory molecules involved in T cell activation. These studies describe a method for isolating viable single cells and a detailed description of flow cytometric analysis of cells from healthy and diseased stomachs. These studies begin to identify effects of chronic inflammation on individual gastric epithelial cells, a critical consideration for the study of gastric cancer.


Asunto(s)
Citometría de Flujo/métodos , Mucosa Gástrica/citología , Animales , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Mucosa Gástrica/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Ratones , Ratones Endogámicos BALB C
9.
10.
J Biol Chem ; 290(8): 5127-5140, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25556651

RESUMEN

Whether or not CD4(+) T-cells express low affinity receptor FcγRIIIa (CD16a) in disease pathology has not been examined in great detail. In this study, we show that a subset of activated CD4(+) T-cells in humans express FcγRIIIa. The ligation of FcγRIIIa by immune complexes (ICs) in human CD4(+) T-cells produced co-stimulatory signal like CD28 that triggered IFN-γ production. The induced expression of FcγRIIIa on CD4(+) helper T-cells is an important finding since these receptors via ITAM contribute to intracellular signaling. The induced expression of FcγRIIIa on CD4(+) T helper cells and their ability to co-stimulate T-cell activation are important and novel findings that may reveal new pathways to regulate adaptive immune responses during inflammation and in autoimmunity.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Interferón gamma/inmunología , Activación de Linfocitos , Linfocitos T Colaboradores-Inductores/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Antígenos CD28/biosíntesis , Antígenos CD28/inmunología , Femenino , Humanos , Interferón gamma/metabolismo , Células Jurkat , Masculino , Receptores de IgG/biosíntesis , Receptores de IgG/inmunología , Linfocitos T Colaboradores-Inductores/patología
11.
J Biol Chem ; 290(12): 7930-42, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25645917

RESUMEN

ATP-gated P2X7 receptors are prominently expressed in inflammatory cells and play a key role in the immune response. A major consequence of receptor activation is the regulated influx of Ca(2+) through the self-contained cation non-selective channel. Although the physiological importance of the resulting rise in intracellular Ca(2+) is universally acknowledged, the biophysics of the Ca(2+) flux responsible for the effects are poorly understood, largely because traditional methods of measuring Ca(2+) permeability are difficult to apply to P2X7 receptors. Here we use an alternative approach, called dye-overload patch-clamp photometry, to quantify the agonist-gated Ca(2+) flux of recombinant P2X7 receptors of dog, guinea pig, human, monkey, mouse, rat, and zebrafish. We find that the magnitude of the Ca(2+) component of the ATP-gated current depends on the species of origin, the splice variant, and the concentration of the purinergic agonist. We also measured a significant contribution of Ca(2+) to the agonist-gated current of the native P2X7Rs of mouse and human immune cells. Our results provide cross-species quantitative measures of the Ca(2+) current of the P2X7 receptor for the first time, and suggest that the cytoplasmic N terminus plays a meaningful role in regulating the flow of Ca(2+) through the channel.


Asunto(s)
Adenosina Trifosfato/fisiología , Canales de Calcio/metabolismo , Receptores Purinérgicos P2X7/fisiología , Animales , Células Cultivadas , Humanos , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Ratones , Permeabilidad
12.
Mol Cancer Ther ; 23(5): 672-682, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38315993

RESUMEN

Head and neck cancer (HNC) is prevalent worldwide, and treatment options are limited. Momordicine-I (M-I), a natural component from bitter melon, shows antitumor activity against these cancers, but its mechanism of action, especially in the tumor microenvironment (TME), remains unclear. In this study, we establish that M-I reduces HNC tumor growth in two different immunocompetent mouse models using MOC2 and SCC VII cells. We demonstrate that the anticancer activity results from modulating several molecules in the monocyte/macrophage clusters in CD45+ populations in MOC2 tumors by single-cell RNA sequencing. Tumor-associated macrophages (TAM) often pose a barrier to antitumor effects, but following M-I treatment, we observe a significant reduction in the expression of Sfln4, a myeloid cell differentiation factor, and Cxcl3, a neutrophil chemoattractant, in the monocyte/macrophage populations. We further find that the macrophages must be in close contact with the tumor cells to inhibit Sfln4 and Cxcl3, suggesting that these TAMs are impacted by M-I treatment. Coculturing macrophages with tumor cells shows inhibition of Agr1 expression following M-I treatment, which is indicative of switching from M2 to M1 phenotype. Furthermore, the total B-cell population in M-I-treated tumors is significantly lower, whereas spleen cells also show similar results when cocultured with MOC2 cells. M-I treatment also inhibits PD1, PD-L1, and FoxP3 expression in tumors. Collectively, these results uncover the potential mechanism of M-I by modulating immune cells, and this new insight can help to develop M-I as a promising candidate to treat HNCs, either alone or as adjuvant therapy.


Asunto(s)
Linfocitos B , Neoplasias de Cabeza y Cuello , Animales , Ratones , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/inmunología , Humanos , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Microambiente Tumoral/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
13.
Cancer Immunol Res ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38695618

RESUMEN

Emerging evidence in preclinical models demonstrates that antitumor immunity is not equivalent between males and females. However, more investigation in patients and across a wider range of cancer types is needed to fully understand sex as a variable in tumor immune responses. We investigated differences in T-cell responses between male and female patients with lung cancer by performing sex-based analysis of single cell transcriptomic datasets. We found that the transcript encoding CXC motif chemokine ligand 13 (CXCL13), which has recently been shown to correlate with T-cell tumor specificity, is expressed at greater levels in T cells isolated from female compared to male patients. Furthermore, increased expression of CXCL13 was associated with response to PD-1-targeting immunotherapy in female but not male patients. These findings suggest that there are sex-based differences in T-cell function required for response to anti-PD-1 therapy in lung cancer that may need to be considered during patient treatment decisions.

14.
Nat Commun ; 15(1): 2835, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565540

RESUMEN

Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.


Asunto(s)
Neoplasias , Obesidad , Humanos , Animales , Ratones , Monitorización Inmunológica , Obesidad/etiología , Dieta , Factores de Riesgo
15.
J Immunol ; 187(4): 1745-53, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21746962

RESUMEN

The ability to regulate ongoing inflammation using regulatory T cells (Tregs) is under intense investigation. Strategies to induce and expand Ag-specific Tregs are being developed, and whether various types of Tregs are suppressive in the inflammatory conditions associated with ongoing disease needs to be determined. In this study, we report that TGF-ß-induced Tregs (iTregs) and expanded Tregs specific for a major self-Ag in autoimmune gastritis suppress inflammation and associated pathology when administered late in the process of ongoing disease. Transferred iTregs localized to the stomach, maintained Foxp3 and suppressor functions, and engaged several distinct mechanisms to alleviate disease progression. In addition to suppressing the production of inflammatory cytokines in the stomach and preventing the destruction of parietal cells, we show that iTregs secrete numerous chemokines and regulate both iTreg and effector T cell trafficking into the stomach. These data support efforts to use iTregs in therapies to treat autoimmunity and inflammatory diseases and provide novel insight into the biological mechanisms of iTreg-mediated immune suppression.


Asunto(s)
Autoantígenos/inmunología , Enfermedades Autoinmunes/inmunología , Movimiento Celular/inmunología , Quimiocinas/inmunología , Gastritis/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Autoantígenos/metabolismo , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/terapia , Quimiocinas/metabolismo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Mucosa Gástrica/metabolismo , Gastritis/metabolismo , Gastritis/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Estómago/inmunología , Estómago/patología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Factor de Crecimiento Transformador beta/metabolismo
16.
Cell Mol Gastroenterol Hepatol ; 16(3): 325-339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37270061

RESUMEN

BACKGROUND & AIMS: Acute and chronic gastric injury induces alterations in differentiation within the corpus of the stomach called pyloric metaplasia. Pyloric metaplasia is characterized by the death of parietal cells and reprogramming of mitotically quiescent zymogenic chief cells into proliferative, mucin-rich spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Overall, pyloric metaplastic units show increased proliferation and specific expansion of mucous lineages, both by proliferation of normal mucous neck cells and recruitment of SPEM cells. Here, we identify Sox9 as a potential gene of interest in the regulation of mucous neck and SPEM cell identity in the stomach. METHODS: We used immunostaining and electron microscopy to characterize the expression pattern of SRY-box transcription factor 9 (SOX9) during murine gastric development, homeostasis, and injury in homeostasis, after genetic deletion of Sox9 and after targeted genetic misexpression of Sox9 in the gastric epithelium and chief cells. RESULTS: SOX9 is expressed in all early gastric progenitors and strongly expressed in mature mucous neck cells with minor expression in the other principal gastric lineages during adult homeostasis. After injury, strong SOX9 expression was induced in the neck and base of corpus units in SPEM cells. Adult corpus units derived from Sox9-deficient gastric progenitors lacked normal mucous neck cells. Misexpression of Sox9 during postnatal development and adult homeostasis expanded mucous gene expression throughout corpus units including within the chief cell zone in the base. Sox9 deletion specifically in chief cells blunts their reprogramming into SPEM. CONCLUSIONS: Sox9 is a master regulator of mucous neck cell differentiation during gastric development. Sox9 also is required for chief cells to fully reprogram into SPEM after injury.


Asunto(s)
Células Principales Gástricas , Animales , Ratones , Células Principales Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Metaplasia/metabolismo , Células Parietales Gástricas/metabolismo , Estómago
17.
Front Immunol ; 13: 902017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757757

RESUMEN

Single-cell RNA sequencing (scRNAseq) technology is still relatively new in the field of gastric cancer immunology but gaining significant traction. This technology now provides unprecedented insights into the intratumoral and intertumoral heterogeneities at the immunological, cellular, and molecular levels. Within the last few years, a volume of publications reported the usefulness of scRNAseq technology in identifying thus far elusive immunological mechanisms that may promote and impede gastric cancer development. These studies analyzed datasets generated from primary human gastric cancer tissues, metastatic ascites fluid from gastric cancer patients, and laboratory-generated data from in vitro and in vivo models of gastric diseases. In this review, we overview the exciting findings from scRNAseq datasets that uncovered the role of critical immune cells, including T cells, B cells, myeloid cells, mast cells, ILC2s, and other inflammatory stromal cells, like fibroblasts and endothelial cells. In addition, we also provide a synopsis of the initial scRNAseq findings on the interesting epithelial cell responses to inflammation. In summary, these new studies have implicated roles for T and B cells and subsets like NKT cells in tumor development and progression. The current studies identified diverse subsets of macrophages and mast cells in the tumor microenvironment, however, additional studies to determine their roles in promoting cancer growth are needed. Some groups specifically focus on the less prevalent ILC2 cell type that may contribute to early cancer development. ScRNAseq analysis also reveals that stromal cells, e.g., fibroblasts and endothelial cells, regulate inflammation and promote metastasis, making them key targets for future investigations. While evaluating the outcomes, we also highlight the gaps in the current findings and provide an assessment of what this technology holds for gastric cancer research in the coming years. With scRNAseq technology expanding rapidly, we stress the need for periodic review of the findings and assess the available scRNAseq analytical tools to guide future work on immunological mechanisms of gastric carcinogenesis. .


Asunto(s)
Inmunidad Innata , Neoplasias Gástricas , Carcinogénesis/genética , Células Endoteliales/patología , Humanos , Inflamación , Linfocitos , Análisis de Secuencia de ARN , Microambiente Tumoral/genética
18.
Cell Mol Gastroenterol Hepatol ; 13(2): 623-642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34587523

RESUMEN

BACKGROUND & AIMS: It is well established that chronic inflammation promotes gastric cancer-associated metaplasia, but little is known regarding the mechanisms by which immune cells and cytokines regulate metaplastic cellular changes. The goals of this study were to identify interleukin 13 (IL13)-producing immune cells, determine the gastric epithelial cell response(s) to IL13, and establish the role(s) of IL13 in metaplasia development. METHODS: Experiments used an established mouse model of autoimmune gastritis (TxA23), TxA23×Il4ra-/- mice, which develop gastritis but do not express the IL4/IL13-receptor subunit IL4Rα, and TxA23×Il13-Yfp mice, which express yellow fluorescent protein in IL13-producing cells. Flow cytometry was used to measure IL13 secretion and identify IL13-producing immune cells. Mouse and human gastric organoids were cultured with IL13 to determine epithelial cell response(s) to IL13. Single-cell RNA sequencing was performed on gastric epithelial cells from healthy and inflamed mouse stomachs. Mice with gastritis were administered IL13-neutralizing antibodies and stomachs were analyzed by histopathology and immunofluorescence. RESULTS: We identified 6 unique subsets of IL13-producing immune cells in the inflamed stomach. Organoid cultures showed that IL13 acts directly on gastric epithelium to induce a metaplastic phenotype. IL4Rα-deficient mice did not progress to metaplasia. Single-cell RNA sequencing determined that gastric epithelial cells from IL4Rα-deficient mice up-regulated inflammatory genes but failed to up-regulate metaplasia-associated transcripts. Neutralization of IL13 significantly reduced and reversed metaplasia development in mice with gastritis. CONCLUSIONS: IL13 is made by a variety of immune cell subsets during chronic gastritis and promotes gastric cancer-associated metaplastic epithelial cell changes. Neutralization of IL13 reduces metaplasia severity during chronic gastritis.


Asunto(s)
Gastritis , Interleucina-13 , Animales , Células Epiteliales/patología , Mucosa Gástrica/patología , Gastritis/patología , Interleucina-13/metabolismo , Metaplasia/patología , Ratones
19.
iScience ; 25(1): 103553, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34877479

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019. Few studies have compared replication dynamics and host responses to SARS-CoV-2 in cell lines from different tissues and species. Therefore, we investigated the role of tissue type and antiviral genes during SARS-CoV-2 infection in nonhuman primate (kidney) and human (liver, respiratory epithelial, gastric) cell lines. We report different viral growth kinetics and release among the cell lines despite comparable ACE2 expression. Transcriptomics revealed that absence of STAT1 in nonhuman primate cells appeared to enhance inflammatory responses without effecting infectious viral titer. Deletion of RL-6 in respiratory epithelial cells increased viral replication. Impaired infectious virus release was detected in Huh7 but not Huh7.5 cells, suggesting a role for RIG1. Gastric cells MKN45 exhibited robust antiviral gene expression and supported viral replication. Data here provide insight into molecular pathogenesis of and alternative cell lines for studying SARS-CoV-2 infection.

20.
Front Cell Dev Biol ; 9: 752350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712668

RESUMEN

Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA