Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Regen Biomater ; 11: rbae053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883183

RESUMEN

Healing of chronic diabetic wounds is challenging due to complications of severe inflammatory microenvironment, bacterial infection and poor vascular formation. Herein, a novel injectable polyvinyl alcohol-hyaluronic acid-based composite hydrogel was developed, with tannic acid (TA) and silicate functionalization to fabricate an 'all-in-one' hydrogel PTKH. On one hand, after being locally injected into the wound site, the hydrogel underwent a gradual sol-gel transition in situ, forming an adhesive and protective dressing for the wound. Manipulations of rheological characteristics, mechanical properties and swelling ability of PTKH could be performed via regulating TA and silicate content in hydrogel. On the other hand, PTKH was capable of eliminating reactive oxygen species overexpression, combating infection and generating a cell-favored microenvironment for wound healing acceleration in vitro. Subsequent animal studies demonstrated that PTKH could greatly stimulate angiogenesis and epithelization, accompanied with inflammation and infection risk reduction. Therefore, in consideration of its impressive in vitro and in vivo outcomes, this 'all-in-one' multifunctional hydrogel may hold promise for chronic diabetic wound treatment.

2.
J Mater Chem B ; 12(16): 3917-3926, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38536012

RESUMEN

The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.


Asunto(s)
Hidrogeles , Músculo Esquelético , Polifenoles , Alcohol Polivinílico , Silicatos , Almidón , Taninos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Músculo Esquelético/efectos de los fármacos , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , Silicatos/química , Silicatos/farmacología , Almidón/química , Taninos/química , Taninos/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA