Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood ; 139(15): 2361-2376, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-34871370

RESUMEN

Anemia is common among young children infected with Plasmodium falciparum and severe malarial anemia (SMA) is a major cause of their mortality. Two major mechanisms cause malarial anemia: hemolysis of uninfected as well as infected erythrocytes and insufficient erythropoiesis. In a longitudinal birth cohort in Mali, we commonly observed marked hemoglobin reductions during P falciparum infections with a small proportion that progressed to SMA. We sought biomarkers of these processes using quantitative proteomic analysis on plasma samples from 9 P falciparum-infected children, comparing those with reduced hemoglobin (with or without SMA) vs those with stable hemoglobin. We identified higher plasma levels of circulating 20S proteasome and lower insulin-like growth factor-1 (IGF-1) levels in children with reduced hemoglobin. We confirmed these findings in independent enzyme-linked immunosorbent assay-based validation studies of subsets of children from the same cohort (20S proteasome, N = 71; IGF-1, N = 78). We speculate that circulating 20S proteasome plays a role in digesting erythrocyte membrane proteins modified by oxidative stress, resulting in hemolysis, whereas decreased IGF-1, a critical factor for erythroid maturation, might contribute to insufficient erythropoiesis. Quantitative plasma proteomics identified soluble mediators that may contribute to the major mechanisms underlying malarial anemia. This study was registered at www.clinicaltrials.gov as #NCT01168271.


Asunto(s)
Anemia , Malaria Falciparum , Malaria , Anemia/etiología , Biomarcadores , Niño , Preescolar , Hemoglobinas , Hemólisis , Humanos , Factor I del Crecimiento Similar a la Insulina , Malaria Falciparum/complicaciones , Plasmodium falciparum , Complejo de la Endopetidasa Proteasomal , Proteómica
2.
J Infect Dis ; 227(2): 171-178, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35849702

RESUMEN

BACKGROUND: The frequency and clinical presentation of malaria infections show marked heterogeneity in epidemiological studies. However, deeper understanding of this variability is hampered by the difficulty in quantifying all relevant factors. Here, we report the history of malaria infections in twins, who are exposed to the same in utero milieu, share genetic factors, and are similarly exposed to vectors. METHODS: Data were obtained from a Malian longitudinal birth cohort. Samples from 25 twin pairs were examined for malaria infection and antibody responses. Bayesian models were developed for the number of infections during follow-up. RESULTS: In 16 of 25 pairs, both children were infected and often developed symptoms. In 8 of 25 pairs, only 1 twin was infected, but usually only once or twice. Statistical models suggest that this pattern is not inconsistent with twin siblings having the same underlying infection rate. In a pair with discordant hemoglobin genotype, parasite densities were consistently lower in the child with hemoglobin AS, but antibody levels were similar. CONCLUSIONS: By using a novel design, we describe residual variation in malaria phenotypes in naturally matched children and confirm the important role of environmental factors, as suggested by the between-twin pair heterogeneity in malaria history.


Asunto(s)
Malaria , Gemelos Monocigóticos , Preescolar , Humanos , Teorema de Bayes , Malaria/epidemiología , Gemelos Monocigóticos/genética
3.
J Infect Dis ; 226(3): 521-527, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35290467

RESUMEN

Plasmodium falciparum-infected erythrocytes that display the variant surface antigen VAR2CSA bind chondroitin sulfate A (CSA) to sequester in placental intervillous spaces, causing severe sequelae for mother and offspring. Here, we establish a placental malaria (PM) monkey model. Pregnant Aotus infected with CSA-binding P. falciparum CS2 parasites during the third trimester developed pronounced sequestration of late-stage parasites in placental intervillous spaces that express VAR2CSA and bind specifically to CSA. Similar to immune multigravid women, a monkey infected with P. falciparum CS2 parasites over successive pregnancies acquired antibodies against VAR2CSA, with potent functional activity that was boosted upon subsequent pregnancy infections. Aotus also developed functional antibodies after multiple acute PM episodes and subsequent VAR2CSA immunization. In summary, P. falciparum infections in pregnant Aotus monkeys recapitulate all the prominent features of human PM infection and immunity, and this model can be useful for basic mechanistic studies and preclinical studies to qualify candidate PM vaccines. Clinical Trials Registration: NCT02471378.


Asunto(s)
Malaria Falciparum , Malaria , Complicaciones Parasitarias del Embarazo , Animales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Aotidae , Sulfatos de Condroitina , Eritrocitos , Femenino , Humanos , Placenta , Plasmodium falciparum , Embarazo
4.
Clin Infect Dis ; 73(8): 1355-1361, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846719

RESUMEN

BACKGROUND: In malaria-endemic areas, pregnant women and especially first-time mothers are more susceptible to Plasmodium falciparum. Malaria diagnosis is often missed during pregnancy, because many women with placental malaria remain asymptomatic or have submicroscopic parasitemia, masking the association between malaria and pregnancy outcomes. Severe maternal anemia and low birthweight deliveries are well-established sequelae, but few studies have confirmed the relationship between malaria infection and severe outcomes like perinatal mortality in high transmission zones. METHODS: Pregnant women of any gestational age enrolled at antenatal clinic into a longitudinal cohort study in Ouelessebougou, Mali, an area of high seasonal malaria transmission. Follow-up visits included scheduled and unscheduled visits throughout pregnancy. Blood smear microscopy and polymerase chain reaction (PCR) analysis were employed to detect both microscopic and submicroscopic infections, respectively. Intermittent preventative treatment in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) was documented and prompt treatment regardless of symptoms given upon malaria diagnosis. RESULTS: Of the 1850 women followed through delivery, 72.6% of women received 2 or more IPTp-SP doses, 67.2% of women experienced at least 1 infection between enrollment up to and including delivery. Malaria infection increased the risks of stillbirth (adjusted hazard ratio [aHR] 3.87, 95% confidence interval [CI]: 1.18-12.71) and preterm delivery (aHR 2.41, 95% CI: 1.35-4.29) in primigravidae, and early neonatal death (death within 7 days) in secundigravidae and multigravidae (aHR 6.30, 95% CI: 1.41-28.15). CONCLUSIONS: Malaria treatment after diagnosis, alongside IPTp-SP, is insufficient to prevent malaria-related stillbirth, early neonatal death and preterm delivery (PTD). Although IPTp-SP was beneficial in Mali during the study period, new tools are needed to improve pregnancy outcomes. CLINICAL TRIALS REGISTRATION: NCT01168271.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Muerte Perinatal , Complicaciones Parasitarias del Embarazo , Nacimiento Prematuro , Antimaláricos/uso terapéutico , Quimioprevención , Combinación de Medicamentos , Femenino , Humanos , Recién Nacido , Estudios Longitudinales , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología , Mortalidad Perinatal , Placenta , Embarazo , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Complicaciones Parasitarias del Embarazo/epidemiología , Complicaciones Parasitarias del Embarazo/prevención & control , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/prevención & control , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico
5.
J Infect Dis ; 221(1): 138-145, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31584094

RESUMEN

BACKGROUND: Seasonal malaria chemoprevention (SMC) is a novel strategy to reduce malaria infections in children. Infection with Plasmodium falciparum results in immune dysfunction characterized by elevated expression of markers associated with exhaustion, such as PD1 and LAG3, and regulatory CD4+FOXP3+ T cells. METHODS: In the current study, the impact of seasonal malaria chemoprevention on malaria-induced immune dysfunction, as measured by markers associated with exhaustion and regulatory T cells, was explored by flow cytometry. RESULTS: Children that received seasonal malaria chemoprevention had fewer malaria episodes and showed significantly lower fold changes in CD4+PD1+ and CD4+PD1+LAG3+ compared to those that did not receive SMC. Seasonal malaria chemoprevention had no observable effect on fold changes in CD8 T cells expressing PD1 or CD160. However, children receiving SMC showed greater increases in CD4+FOXP3+ T regulatory cells compared to children not receiving SMC. CONCLUSIONS: These results provide important insights into the dynamics of malaria-induced changes in the CD4 T-cell compartment of the immune system and suggest that the reduction of infections due to seasonal malaria chemoprevention may also prevent immune dysfunction. CLINICAL TRIALS REGISTRATION: NCT02504918.


Asunto(s)
Antígenos CD/sangre , Antimaláricos/uso terapéutico , Linfocitos T CD4-Positivos/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Receptor de Muerte Celular Programada 1/sangre , Amodiaquina/uso terapéutico , Biomarcadores/sangre , Preescolar , Combinación de Medicamentos , Femenino , Factores de Transcripción Forkhead/sangre , Humanos , Lactante , Masculino , Pirimetamina/uso terapéutico , Estaciones del Año , Sulfadoxina/uso terapéutico , Linfocitos T Reguladores , Proteína del Gen 3 de Activación de Linfocitos
6.
J Proteome Res ; 18(11): 3831-3839, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31549843

RESUMEN

Plasmodium falciparum variant antigens named erythrocyte membrane protein 1 (PfEMP1) are important targets for developing a protective immunity to malaria caused by P. falciparum. One of the major challenges in P. falciparum proteomics studies is identifying PfEMP1s at the protein level due to antigenic variation. To identify these PfEMP1s using shotgun proteomics, we developed a pipeline that searches high-resolution mass spectrometry spectra against a custom protein sequence database. A local alignment algorithm, LAX, was developed as a part of the pipeline that matches peptide sequences to the most similar PfEMP1 and calculates a weight value based on peptide's uniqueness used for PfEMP1 protein inference. The pipeline was first validated in the analysis of a laboratory strain with a known PfEMP1, then it was implemented on the analysis of parasite isolates from malaria-infected pregnant women and finally on the analysis of parasite isolates from malaria-infected children where there was an increase of PfEMP1s identified in 27 out of 31 isolates using the expanded database.


Asunto(s)
Proteínas Mutantes/metabolismo , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Niño , Cromatografía Liquida/métodos , Femenino , Humanos , Malaria Falciparum/parasitología , Proteínas Mutantes/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/fisiología , Embarazo , Complicaciones Parasitarias del Embarazo/parasitología , Proteoma/genética , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem/métodos
7.
Malar J ; 18(1): 128, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30971252

RESUMEN

BACKGROUND: Plasmodium falciparum-infected erythrocytes (IE) sequester in deep vascular beds where their adhesion is mediated by an array of endothelial surface receptors. Because parasite adhesion has been associated with disease, antibodies that block this activity may confer protective immunity. Here, levels of plasma anti-adhesion activity and surface reactivity against freshly collected IEs from malaria-infected children were measured in a Malian birth cohort and related to child age and malaria infection history. METHODS: Plasma samples from children enrolled at birth in a longitudinal cohort study of mother-infant pairs in Ouelessebougou, Mali were collected at multiple time points during follow-up visits. Anti-adhesion antibodies (i.e., inhibit IE binding to any of several endothelial receptors) and reactivity with surface IE proteins were measured using a binding inhibition assay and by flow cytometry, respectively. RESULTS: Levels of antibodies that inhibit the binding of children's IE to the receptors ICAM-1, integrin α3ß1 and laminin increased with age. The breadth of antibodies that inhibit ICAM-1 and laminin adhesion (defined as the proportion of IE isolates whose binding was reduced by ≥ 50%) also significantly increased with age. The number of malaria infections prior to plasma collection was associated with levels of plasma reactivity to IE surface proteins, but not levels of anti-adhesion activity. CONCLUSIONS: Age is associated with increased levels of antibodies that reduce adhesion of children's IE to three of the ten endothelial receptors evaluated here. These results suggest that anti-adhesion antibodies to some but not all endothelial receptors are acquired during the first few years of life.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/parasitología , Integrina alfa3beta1/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Malaria Falciparum/fisiopatología , Plasmodium falciparum/inmunología , Adhesión Celular , Preescolar , Humanos , Lactante , Recién Nacido , Laminina/metabolismo , Estudios Longitudinales , Malí
8.
Malar J ; 17(1): 106, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523137

RESUMEN

BACKGROUND: Maternal malaria is a tropical scourge associated with poor pregnancy outcomes. Women become resistant to Plasmodium falciparum pregnancy malaria as they acquire antibodies to the variant surface antigen VAR2CSA, a leading vaccine candidate. Because malaria infection may increase VAR2CSA antibody levels and thereby confound analyses of immune protection, gravidity-dependent changes in antibody levels during and after infection, and the effect of VAR2CSA antibodies on pregnancy outcomes were evaluated. METHODS: Pregnant women enrolled in a longitudinal cohort study of mother-infant pairs in Ouelessebougou, Mali provided plasma samples at enrollment, gestational week 30-32, and delivery. Antibody levels to VAR2CSA domains were measured using a multiplex bead-based assay. RESULTS: Antibody levels to VAR2CSA were higher in multigravidae than primigravidae. Malaria infection was associated with increased antibody levels to VAR2CSA domains. In primigravidae but not in secundigravidae or multigravidae, antibodies levels sharply declined after an infection. A relationship between any VAR2CSA antibody specificity and protection from adverse pregnancy outcomes was not detected. CONCLUSIONS: During malaria infection, primigravidae acquire short-lived antibodies. The lack of an association between VAR2CSA domain antibody reactivity and improved pregnancy outcomes suggests that the recombinant proteins may not present native epitopes targeted by protective antibodies.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Malaria Falciparum/patología , Parasitemia/patología , Complicaciones Infecciosas del Embarazo/patología , Adolescente , Adulto , Femenino , Edad Gestacional , Humanos , Recién Nacido , Estudios Longitudinales , Malí , Persona de Mediana Edad , Embarazo , Resultado del Embarazo , Adulto Joven
9.
Clin Infect Dis ; 65(10): 1729-1735, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29020221

RESUMEN

BACKGROUND: Pregnancy malaria (PM) is associated with a proinflammatory immune response characterized by increased levels of cytokines and chemokines such as tumor necrosis factor-α, interferon-γ, interleukin 10 (IL-10), and CXCL9. These changes are associated with poor outcomes including low birthweight delivery and maternal anemia. However, it is unknown if inflammatory pathways during malaria are related to pregnancy loss and preterm delivery (PTD). METHODS: Cytokine and chemokine levels were measured in maternal peripheral blood at enrollment, gestational week 30-32, and delivery, and in placental blood, of 638 women during a longitudinal cohort study in Ouelessebougou, Mali. Plasmodium falciparum infection was assessed by blood smear microscopy at all visits. RESULTS: PM was associated with increased levels of cytokines and chemokines including IL-10 and CXCL9. In a competing risks model adjusted for known covariates, high CXCL9 levels measured in the peripheral blood during pregnancy were associated with increased risk of pregnancy loss and PTD. At delivery, high IL-10 levels in maternal blood were associated with an increase in pregnancy loss, and increased IL-1ß levels in placental blood were associated with pregnancy loss and PTD. CONCLUSIONS: PM is associated with increased proinflammatory cytokine and chemokine levels in placental and maternal peripheral blood. Systemic inflammatory responses to malaria during pregnancy predict increased risk of pregnancy loss and PTD. CLINICAL TRIALS REGISTRATION: NCT01168271.


Asunto(s)
Aborto Espontáneo/epidemiología , Malaria Falciparum/epidemiología , Complicaciones Parasitarias del Embarazo/epidemiología , Nacimiento Prematuro/epidemiología , Síndrome de Respuesta Inflamatoria Sistémica/epidemiología , Aborto Espontáneo/etiología , Adolescente , Adulto , Citocinas/sangre , Femenino , Humanos , Estudios Longitudinales , Malaria Falciparum/complicaciones , Malí/epidemiología , Persona de Mediana Edad , Embarazo , Nacimiento Prematuro/etiología , Síndrome de Respuesta Inflamatoria Sistémica/complicaciones , Adulto Joven
10.
mSystems ; 6(3): e0034721, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34128693

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen family expressed on infected red blood cells that plays a role in immune evasion and mediates adhesion to vascular endothelium. PfEMP1s are potential targets of protective antibodies as suggested by previous seroepidemiology studies. Here, we used previously reported proteomic analyses of PfEMP1s of clinical parasite isolates collected from Malian children to identify targets of immunity. We designed a peptide library representing 11 PfEMP1 domains commonly identified on clinical isolates by membrane proteomics and then examined peptide-specific antibody responses in Malian children. The number of previous malaria infections was associated with development of PfEMP1 antibodies to peptides from domains CIDRα1.4, DBLγ11, DBLß3, and DBLδ1. A zero-inflated negative binomial model with random effects (ZINBRE) was used to identify peptide reactivities that were associated with malaria risk. This peptide selection and serosurvey strategy revealed that high antibody levels to peptides from DBLγ11 and DBLδ1 domains correlated with decreased parasite burden in future infections, supporting the notion that specific PfEMP1 domains play a role in protective immunity. IMPORTANCE Plasmodium infection causes devastating disease and high mortality in young children. Immunity develops progressively as children acquire protection against severe disease, although reinfections and recrudescences still occur throughout life in areas of endemicity, partly due to parasite immunoevasion via switching of variant proteins such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the infected erythrocyte surface. Understanding the mechanisms behind antibody protection can advance development of new therapeutic interventions that address this challenge. PfEMP1 domain-specific antibodies have been linked to reduction in severe malaria; however, the large diversity of PfEMP1 domains in circulating parasites has not been fully investigated. We designed representative peptides based on B cell epitopes of PfEMP1 domains identified in membranes of clinical parasite isolates and surveyed peptide-specific antibody responses among young Malian children in a longitudinal birth cohort. We examined previous infections and age as factors contributing to antibody acquisition and identified antibody specificities that predict malaria risk.

11.
Commun Biol ; 4(1): 1309, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799664

RESUMEN

Plasmodium falciparum-infected erythrocytes (IE) sequester in the placenta via surface protein VAR2CSA, which binds chondroitin sulfate A (CSA) expressed on the syncytiotrophoblast surface, causing placental malaria (PM) and severe adverse outcomes in mothers and their offspring. VAR2CSA belongs to the PfEMP1 variant surface antigen family; PfEMP1 proteins mediate IE adhesion and facilitate parasite immunoevasion through antigenic variation. Here we produced deglycosylated (native-like) and glycosylated versions of seven recombinant full-length VAR2CSA ectodomains and compared them for antigenicity and adhesiveness. All VAR2CSA recombinants bound CSA with nanomolar affinity, and plasma from Malian pregnant women demonstrated antigen-specific reactivity that increased with gravidity and trimester. However, allelic and glycosylation variants differed in their affinity to CSA and their serum reactivities. Deglycosylated proteins (native-like) showed higher CSA affinity than glycosylated proteins for all variants except NF54. Further, the gravidity-related increase in serum VAR2CSA reactivity (correlates with acquisition of protective immunity) was absent with the deglycosylated form of atypical M200101 VAR2CSA with an extended C-terminal region. Our findings indicate significant inter-allelic differences in adhesion and seroreactivity that may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design.


Asunto(s)
Antígenos de Protozoos/inmunología , Inmunogenicidad Vacunal , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Femenino , Humanos , Malaria Falciparum/prevención & control , Placenta/inmunología , Embarazo , Unión Proteica
12.
Sci Rep ; 7(1): 13872, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066816

RESUMEN

P. falciparum virulence is related to adhesion and sequestration of infected erythrocytes (IE) in deep vascular beds, but the endothelial receptors involved in severe malaria remain unclear. In the largest ever study of clinical isolates, we surveyed adhesion of freshly collected IE from children under 5 years of age in Mali to identify novel vascular receptors, and examined the effects of host age, hemoglobin type, blood group and severe malaria on levels of IE adhesion to a panel of endothelial receptors. Several novel molecules, including integrin α3ß1, VE-cadherin, ICAM-2, junctional adhesion molecule-B (JAM-B), laminin, and cellular fibronectin, supported binding of IE from children. Severe malaria was not significantly associated with levels of IE adhesion to any of the 19 receptors. Hemoglobin AC, which reduces severe malaria risk, reduced IE binding to the receptors CD36 and integrin α5ß1, while hemoglobin AS did not modify IE adhesion to any receptors. Blood groups A, AB and B significantly reduced IE binding to ICAM-1. Severe malaria risk varies with age, but age significantly impacted the level of IE binding to only a few receptors: IE binding to JAM-B decreased with age, while binding to CD36 and integrin α5ß1 significantly increased with age.


Asunto(s)
Adhesión Celular , Células Endoteliales/metabolismo , Interacciones Huésped-Patógeno , Plasmodium falciparum/metabolismo , Receptores de Superficie Celular/metabolismo , Niño , Preescolar , Humanos , Lactante , Plasmodium falciparum/fisiología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA