Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958847

RESUMEN

Yeasts are important microorganisms used in different fermentation processes. The cocoa beans must go through a correct fermentation process to obtain good-quality chocolate, which involves the action of yeasts and bacteria, and yeasts play a crucial role since they act in the first days of fermentation. In coffee, several studies have shown that the microbiota in the fruits is also a relevant factor. The fermentation process (regardless of the processing type) improves the beverage's quality. In this sense, studies using starter cultures in these two raw materials are important for better control of the process, and optimization of fermentation time, in addition to the improvement and diversification of volatile and non-volatile compounds produced by yeasts. Thus, this review discusses the importance and role of yeasts during fermentation, their metabolism, the produced compounds, and how yeast and the different chemical reactions help increase the quality of chocolate and coffee.


Asunto(s)
Cacao , Chocolate , Fermentación , Café/metabolismo , Café/microbiología , Levaduras/metabolismo , Cacao/química , Cacao/metabolismo , Cacao/microbiología , Saccharomyces cerevisiae/metabolismo
2.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626744

RESUMEN

AIM: This work evaluated the microbial diversity and physicochemical characteristics of fresh and fermented fruits from Brazilian untreated green table olives of the Ascolano and Grappolo cultivars. METHODS AND RESULTS: Twenty species of mesophilic bacteria, seven lactic acid bacteria, and fourteen yeast were identified. Some species prevailed over others, such as the bacteria Levilactobacillus brevis, Lacticaseibacillus paracasei subsp. paracasei, Pantoea agglomerans, Staphylococcus warneri, Bacillus simplex, B. thuringiensis, and the yeasts Candida parapsilosis, Ca. orthopsilosis, and Cryptococcus flavescen. In the olive fruit and olive brine, the sugars: sucrose, glucose, mannitol, and fructose, and the acids: acetic, citric, lactic, malic, and succinic were identified. Thirty-seven volatile compounds belonging to different chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons, phenols, ketones, and ether were identified in the fruits and brine olives. CONCLUSION: The polyphasic methodology using matrix assisted laser desorption/ionization-time of flight and 16S rRNA sequencing was efficiently performed to identify microorganisms; chemical analysis helped to understand the fermentation process of olives.


Asunto(s)
Olea , Olea/microbiología , Brasil , ARN Ribosómico 16S/genética , Levaduras/genética , Bacterias/genética , Saccharomyces cerevisiae/genética , Fermentación , Microbiología de Alimentos
3.
Appl Microbiol Biotechnol ; 107(24): 7621-7633, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819395

RESUMEN

Biosurfactants (BS) are becoming a solution for today's world since they are considered a reasonable and eco-friendly option for use in products that require surfactants. This study aimed to evaluate the antibacterial activity of purified fractions containing biosurfactants produced by the yeast Wickerhamomyces anomalus CCMA 0358 using waste cooking oil (WCO) as substrate. Mixed fractions were separated and characterized by TLC, MPLC, GC-MS, LC-OMS, LC-SQMS, FTIR, 1H, 13C, DEPT 135, COSY, HSQC, and HMBC. The results confirmed the presence of palmitic acid and oleic acid fatty acids, derived from the core biosurfactant structure; however, the core could not be identified. The crude biosurfactant and its purified fractions were evaluated against pathogenic bacteria, and the purified fractions of the biosurfactant are more efficient at inhibitory and bactericidal activities than the crude biosurfactant. To the best of our knowledge, this is the first study that evaluated the antimicrobial activity of purified fractions of biosurfactants produced by the species Wickerhamomyces anomalus. Therefore, the purification of biosurfactants can emerge as an interesting alternative to increase the bioactivity of the compounds and ensure greater efficiency and biotechnological employability. KEY POINTS: • Successful production of a biosurfactant using a renewed carbon source. • Evaluation of the antimicrobial activity of purified fractions of BS. • Separated fractions of the BS are more efficient against bacteria than the crude BS.


Asunto(s)
Saccharomycetales , Bacterias , Ácidos Grasos , Tensoactivos/farmacología , Tensoactivos/química , Antibacterianos/farmacología
4.
Food Microbiol ; 110: 104161, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36462817

RESUMEN

This work aimed to evaluate the impact of inoculation single and co-cultivation of LAB and yeasts during the wet process of Coffea canephora using the self-induced anaerobic fermentation method. Saccharomyces cerevisiae, Totulaspora delbrueckii delbrueckii, Leuconostoc mesenteroides, and Lactiplantibacillus plantarum were monitored during fermentation. L. mesenteroides was detected in high concentrations in the coffee fruits (8.54 log10 cells/mL) and remained until the end of fermentation. Lactic and acetic acids were the main acids produced during fermentation. After 36 h of fermentation, 75.39% of malic acid was consumed in the L. mesenteroides + S. cerevisiae (MC) fermentations. In roasted coffee, the caffeine concentration reached 3.29 higher than the green beans in MC fermentation. Specific volatile compounds were detected in inoculated fermentation and may contribute to the beverage quality. Coffee inoculated with Leuconostoc mesenteroides was classified as fine (80.0-89.0), while the other fermentations were classified as premium (70.0-79.0). L. mesenteroides inoculation showed the best sensory score, and the beverage was characterized by caramel, fruity, and spices notes. L. mesenteroides inoculated alone or in co-culture with S. cerevisiae are promising starter cultures to improve Conilon coffee quality and obtain beverages with differentiated sensory profiles.


Asunto(s)
Coffea , Lactobacillales , Leuconostoc mesenteroides , Café , Fermentación , Saccharomyces cerevisiae , Anaerobiosis
5.
J Sci Food Agric ; 102(14): 6687-6695, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35620803

RESUMEN

BACKGROUND: After the harvest, green coffee beans are dried on the farm using several methods: the wet process, natural process, pulped natural process, or mechanical demucilaging. This study evaluated how the choice of a specific processing method influenced the volatile organic compounds of the coffee beans, before and after roasting, and the sensory characteristics of the beverage. Coffea arabica beans of two varieties (cv. Mundo Novo and cv. Catuai Vermelho) were subjected to these four processing methods on a single farm in the Cerrado area of Brazil. RESULTS: Analysis by gas chromatography-mass spectrometry headspace solid-phase microextraction identified 40 volatile organic compounds in green coffee beans and 37 in roasted beans. The main difference between post-harvest treatments was that naturally processed green beans of both varieties contained a different profile of alcohols, acids, and lactones. In medium-roasted beans, those differences were not observed. The coffee beverages had similar taste attributes but distinct flavor profiles. Some of the treatments resulted in specialty-grade coffee, whereas others did not. CONCLUSION: The choice of a specific post-harvest processing method influences the volatile compounds found in green beans, the final beverage's flavor profile, and the cupping score, which can have a significant impact on the profitability of coffee farms' operations. © 2022 Society of Chemical Industry.


Asunto(s)
Coffea , Compuestos Orgánicos Volátiles , Coffea/química , Manipulación de Alimentos/métodos , Lactonas/análisis , Semillas/química , Compuestos Orgánicos Volátiles/química
6.
J Food Sci Technol ; 56(4): 1978-1987, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30996432

RESUMEN

Blue cheeses are susceptible to yeast and bacterial growth on their surface, which causes spoilage during ripening process and the formation of slime. The dairy industry frequently control the proliferation of undesirable microorganisms with natamycin and high salt concentration. The green propolis is a complex of substances that presents antimicrobial properties with great potential as preservative in the food industry. The aims of the present study were to identify the mesophilic aerobic microorganisms present on the surface of Gorgonzola-type cheese, evaluate the antifungal and antibacterial effects of the ethanol extract of green propolis (EEP) on the development of those microorganisms and verify the effects of EEP on the sensory quality of cheese. Ten yeast species belonging to genera Yarrowia, Candida, Debaryomyces and Saccharomyces were identified, as well as seven species of bacteria belonging to genera Staphylococcus, Bacillus, Enterococcus, Corynebacterium and Proteus. The EEP showed minimum biocide concentration (MBC), between 0.3% (weight/weight) and 5% for Bacillus cereus and Proteus vulgaris, respectively. Saccharomyces cerevisiae was the most sensitive species (MBC of 0.63%) and Candida parapsilosis the most resistant one (MBC of 5%). In the sensory analysis, the cheeses involved with EEP at 5% concentration did not differ from the control, while at 10%, there was a slight decrease in acceptance. The EEP has potential and feasibility to be used in Gorgonzola-type cheese, inhibiting the main bacteria and yeasts without affecting largely the sensory characteristics of the product.

7.
Prep Biochem Biotechnol ; 47(4): 357-363, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27737603

RESUMEN

The main carbon source used for growth by four yeast strains (Yarrowia lipolytica CCMA 0357, Y. lipolytica CCMA 0242, Wickerhamomyces anomalus CCMA 0358, and Cryptococcus humicola CCMA 0346) and their lipid production were evaluated, using different concentrations of crude and pure glycerol and glucose. Whereas crude glycerol (100 g/L) was the main carbon source used by Y. lipolytica CCMA 0357 (nearly 15 g/L consumed at 120 hr) and W. anomalus CCMA 0358 (nearly 45.10 g/L consumed at 48 hr), pure glycerol (150 g/L) was the main one used by C. humicola CCMA 0346 (nearly 130 g/L consumed). On the other hand, Y. lipolytica CCMA 0242 used glucose (100 g/L) as its main source of carbon (nearly 96.48 g/L consumed). Y. lipolytica CCMA 0357 demonstrated the highest lipid production [about 70% (wt/wt)], forming palmitic (45.73% of fatty acid composition), stearic (16.43%), palmitoleic (13.29%), linolenic (10.77%), heptadecanoic (4.07%), and linoleic (14.14%) acids. Linoleic acid, an essential fatty acid, was produced by all four yeast strains but in varying degrees, representing 70.42% of the fatty acid profile of lipids produced by C. humicola CCMA 0346.


Asunto(s)
Biocombustibles/microbiología , Candida/metabolismo , Cryptococcus/metabolismo , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Yarrowia/metabolismo , Biocombustibles/análisis , Biomasa , Candida/crecimiento & desarrollo , Cryptococcus/crecimiento & desarrollo , Ácidos Grasos/análisis , Glucosa/metabolismo , Microbiología Industrial , Ácido Linoleico/análisis , Ácido Linoleico/metabolismo , Metabolismo de los Lípidos , Yarrowia/crecimiento & desarrollo
8.
Prep Biochem Biotechnol ; 47(5): 505-512, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28045607

RESUMEN

Actinobacteria isolates from Brazilian Cerrado soil were evaluated for their ability to produce enzymes of the cellulolytic and xylanolytic complex using lignocellulose residual biomass. Preliminary semiquantitative tests, made in Petri plates containing carboxymethylcellulose and beechwood xylan, indicated 11 potential species producing enzymes, all belonging to the genus Streptomyces. The species were subsequently grown in pure substrates in submerged fermentation and analyzed for the production of enzymes endoglucanase, ß-glucosidase, endoxylanase, and ß-xylosidase. The best results were obtained for endoxylanase enzyme production with Streptomyces termitum(UFLA CES 93). The strain was grown on lignocellulose biomass (bagasse, straw sugarcane, and cocoa pod husk) that was used in natura or acid pretreated. The medium containing sugarcane bagasse in natura favored the production of the endoxylanase that was subsequently optimized through an experimental model. The highest enzyme production 0.387 U mL-1, (25.8 times higher), compared to the lowest value obtained in one of the trials, was observed when combining 2.75% sugar cane bagasse and 1.0 g L-1 of yeast extract to the alkaline medium (pH 9.7). This is the first study using S. termitum as a producer of endoxylanase.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Microbiología Industrial/métodos , Lignina/metabolismo , Streptomyces/enzimología , Actinobacteria/enzimología , Actinobacteria/metabolismo , Biomasa , Celulasa/metabolismo , Celulosa/metabolismo , Saccharum/metabolismo , Streptomyces/metabolismo , Xilanos/metabolismo , Xilosidasas/metabolismo
9.
Food Technol Biotechnol ; 55(2): 225-230, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28867952

RESUMEN

γ-Decalactone is a flavour compound that when obtained by biotechnological production using microorganisms is classified as natural. The aim of this study is to evaluate various conditions for γ-decalactone production by tropical yeast strains Yarrowia lipolytica CCMA 0242 and Lindnera saturnus CCMA 0243. The growth of and γ-decalactone production by Y. lipolytica CCMA 0242 were higher in castor oil than in glycerol. γ-Decalactone production in single batch or fed-batch fermentation did not differ significantly. The γ-decalactone production by L. saturnus CCMA 0243 was better at initial pH=5, while the production by Y. lipolytica CCMA 0242 was better at initial pH=6. The yeast L. saturnus CCMA 0243 produced more γ-decalactone than Y. lipolytica CCMA 0242 under the same fermentation conditions. The crude glycerol was not an alternative substrate for γ-decalactone production by Y. lipolytica CCMA 0242. Castor oil at volume fraction of 30% showed better results as a substrate. The strain L. saturnus CCMA 0243 showed better results of γ-decalactone production. This yeast species can be considered an alternative producer of γ-decalactone in biotechnological processes.

10.
Food Technol Biotechnol ; 54(3): 351-359, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27956867

RESUMEN

Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

11.
J Food Sci Technol ; 53(2): 1101-10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27162390

RESUMEN

Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes.

12.
Food Res Int ; 192: 114762, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147483

RESUMEN

Consumer demand for functional foods has increased, helping to popularize and increase the consumption of Kombucha. Other substrates have been used together with tea to improve the functional and sensory properties of the beverage. Thus, this study evaluated the comprehensive biochemical, microbiological, and sensory characteristics of kombuchas fermented with green tea (Camellia sinensis) and different concentrations of yam (0, 10, and 20 % w/v). Based on pre-tests to detect the best concentration of yam in the beverage (10, 20, 30, and 40 %) and fermentation time (5, 7, and 14 days),the concentrations of 10 and 20 % of yam and five days of fermentation were selected through pH, °Brix, and sensory analysis. During the kombucha fermentation, there was a decrease in °Brix and pH. Sucrose, glucose, fructose, citric, and succinic acids were related to the beginning of fermentation, and lactic and acetic acids were more related to the end of fermentation in the treatment containing 20 % yam. The fermentation time did not change the color of the kombucha. Fatty acids, phenols, terpenoids, and alcohols were the volatile groups with the most compounds identified. Only two yeast genera were identified (Brettanomyces bruxellensis and Pichia membranifaciens), and bacteria of the genera Acetobacter, Lactobacillus, Pantoea, Pseudomonas, Azospirillum, and Enterobacter. The beverage control showed less turbidity and more clear. The fruity descriptor was more perceived in treatments with yam. However, the perception of the apple descriptor decreases as the yam concentration increases. The yam's concentration alters the kombucha's microbiota and sensory characteristics, mainly appearance and acidity. Kombucha fermentation using yam extract is viable, and the product is sensorially accepted. However, technological improvements, such as yam flour, could be made mainly for appearance and taste attributes.


Asunto(s)
Dioscorea , Fermentación , Gusto , Dioscorea/química , Dioscorea/microbiología , Humanos , Femenino , Masculino , Concentración de Iones de Hidrógeno , Levaduras/metabolismo , Levaduras/clasificación , Camellia sinensis/microbiología , Camellia sinensis/química , Adulto , Té de Kombucha/microbiología , Té de Kombucha/análisis , Alimentos Funcionales , Adulto Joven
13.
Braz J Microbiol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775907

RESUMEN

Variation in fermentation time may be an essential alternative to provide coffee beverages with different and unique sensory profiles. This work investigated the microbiological, chemical, and sensory changes in coffees submitted to different fermentation durations (0, 24, 48, 72, and 96 h). Self-induced anaerobiosis fermentation (SIAF) was used, and two treatments were performed: spontaneous fermentation and inoculation with S. cerevisiae CCMA0543. Microbiological analyses were performed, and the permanence of the inoculum was monitored. Chromatography (sugars, organic acids, and volatile compounds) was analyzed, and sensory analysis (temporal dominance of sensations - TDS) was performed. A total of 228 isolates were identified during spontaneous fermentation. The dominant bacteria and yeasts were Leuconostoc mesenteroides, Lactiplantibacillus plantarum, Staphylococcus warneri, Bacillus sp., Torulaspora delbrueckii, Hanseniaspora uvarum, and Meyerozyma caribbica. High concentrations of citric (18.67 mg.g- 1) and succinic (5.04 mg.g- 1) acids were detected at 96 h in SIAF fermentation. One hundred twenty-one volatile compounds were detected, but 22 were detected only in inoculated coffees. In spontaneous fermentation, 48 h of fermentation showed woody notes, while 72 h showed chestnuts. However, in the inoculated coffee, 72 h of fermentation showed high fruity dominance, and 96 h of fermentation was the only one with herbaceous notes. In addition, yeast inoculation increased the intensity of caramel notes in the first 48 h and increased the fruity flavor after 72 h of fermentation. Therefore, the type of fermentation (with or without inoculation) and the chosen fermentation time will depend on the sensorial profile the producer intends to obtain.

14.
World J Microbiol Biotechnol ; 29(2): 235-47, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23054699

RESUMEN

The coffee fermentation is characterized by the presence of different microorganisms belonging to the groups of bacteria, fungi and yeast. The objectives of this work were to select pectinolytic microorganisms isolated from coffee fermentations and evaluate their performance on coffee pulp culture medium. The yeasts and bacteria isolates were evaluated for their activity of polygalacturonase (PG), pectin lyase (PL) and pectin methylesterase (PME) and metabolites production. Among 127 yeasts isolates and 189 bacterial isolates, 15 were pre-selected based on their ability to produce PL and organic compounds. These isolates were strains identified as Bacillus cereus, Bacillus megaterium, Bacillus subtilis, Candida parapsilosis, Pichia caribbica, Pichia guilliermondii and Saccharomyces cerevisiae. When cultivated in Coffee peel and pulp media in single culture or two by two mixed inocula, different behavior concerning to PME, PL and PG were found. The two principal components PC1 and PC2 accounted for 45.27 and 32.02 % of the total variance. UFLA CN727 and UFLA CN731 strains were grouped in the positive part of PC1 being characterized by 1,2-propanediol, hexanoic acid, decanoic acid, nonanoic acid and ethyl acetate. The UFLA CN448 and UFLA CN724 strains were grouped in the negative part of PC1 and were mainly characterized by guaiacol, butyric acid and citronellol. S. cerevisiae UFLACN727, P. guilliermondii UFLACN731 and C. parapsilosis UFLACN448 isolates are promising candidates to be tested in future studies as coffee starter cultures.


Asunto(s)
Bacterias/aislamiento & purificación , Coffea/microbiología , Levaduras/aislamiento & purificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Coffea/química , Coffea/metabolismo , Fermentación , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Proteínas Fúngicas/metabolismo , Polisacárido Liasas/metabolismo , Control de Calidad , Levaduras/enzimología , Levaduras/genética
15.
Toxins (Basel) ; 15(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36668890

RESUMEN

Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.


Asunto(s)
Lactobacillales , Olea , Patulina , Antifúngicos/farmacología , Olea/microbiología , Brasil , Hongos , Aflatoxina B1
16.
Braz J Microbiol ; 54(2): 1021-1033, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37162703

RESUMEN

Artisanal Minas cheese (QMA) is traditionally elaborate using raw milk and endogenous ferment (pingo - whey or rala - grated ripened cheese). In the present study, 91 yeast strains were isolated and identified from pingo and rala. Eight yeast species were identified by the MALDI-TOF mass spectrometry and confirmed by sequencing of the ITS region. The yeasts' protease and lipase activities were evaluated in addition to probiotic properties such as tolerance to low pH and bile salts, hydrophobicity, autoaggregation, co-aggregation with pathogens, and antimicrobial susceptibility. The rala ferment showed a greater variety of species. Yarrowia lipolytica was the dominant specie (52.7% of isolates), followed by the Kluyveromyces lactis and Kodamaea ohmeri (9.9 and 6.6%, respectively). From the total yeasts evaluated, 74 strains showed positive enzymatic activity: 52 strains showed lipolytic (51 Y. lipolytica and one Trichosporon japonicum) and 44 proteolytic activities (18 Y. lipolytica, 13 K. ohmeri, 11 K. lactis, and 2 Wickerhamiella sp.). All evaluated isolates demonstrated tolerance to pH 2.0, and 69 isolates supported the presence of bile salts. From them, 12 isolates showed the capacity of autoaggregation (> 30%) and hydrophobicity (> 90.0%) and were then selected for co-aggregation and antibiotic resistance assays. All selected isolates showed co-aggregation with Salmonella Enteritidis, Escherichia coli, and Listeria monocytogenes greater than 30%. None of the yeast showed sensibility to the evaluated antibiotics and antagonistic activity against the evaluated pathogens. The results demonstrated that pingo and rala have different yeast composition with different enzymatic activity, which may affect the characteristics of the cheese. Furthermore, some yeast strains: Y. lipolytica (9 strains isolated from rala) and K. ohmeri (3 strains isolated from pingo) demonstrated attractive probiotic potential.


Asunto(s)
Queso , Probióticos , Queso/microbiología , Levaduras , Péptido Hidrolasas
17.
Foods ; 11(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36553686

RESUMEN

Coffee quality is achieved by performing good practices. This study aimed to evaluate coffees from different altitudes fermented with the self-induced anaerobic method (SIAF) and processed via natural (N) and pulped natural (PN). Molecular (PCR-DGGE), chemical (HPLC, ABTS, DPPH, ATR-FTIR, and GC-MS), and sensory analyses were performed. Leuconostoc predominated both processes and all altitudes. Hanseniaspora and Pichia predominated both processes at 800 and 1200 m. Acids were higher in N coffees for all altitudes. Acetic, malic acid and alcohols were the most abundant. Higher sensory scores were obtained in N (mainly at 1400 m-88.13). Floral and spices were perceived in all samples. ABTS capacity in roasted coffee increased with altitude in PN (2685.71, 2724.03, and 3847.14 µM trolox/g); meanwhile, the opposite was observed in N. High sensory scores were obtained in high altitudes. Alcohols and acids in roasted beans increase with altitude. Leuconostoc and Pichia showed potential as future coffee starters.

18.
Braz J Microbiol ; 53(3): 1565-1576, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35676493

RESUMEN

The objective of this work was to evaluate the microencapsulation feasibility of Saccharomyces cerevisiae CCMA 0543 and Torulaspora delbrueckii CCMA 0684 in three different compositions of wall material by spray-dryer. The yeasts (109 CFU mL-1) were microencapsulated separately using maltodextrin (15%), maltodextrin (15%) with sucrose (2%), or maltose (2%) as wall material. The viability was evaluated for 6 months at two different temperatures (7 and 25 °C). The yield, cell viability after spray drying, and characterization of the microcapsules were performed. Results indicate that cell viability ranged between 94.06 and 97.97%. After 6 months, both yeasts stored at 7 °C and 25 °C presented 107 and 102 CFU mL-1, respectively. Regarding Fourier-transform infrared spectroscopy analysis, all microencapsulated yeasts presented typical spectra footprints of maltodextrin. After 6 months of storage, S. cerevisiae CCMA 0543 obtained a 10.8% increase in cell viability using maltodextrin with maltose as wall material compared to maltodextrin and maltodextrin with sucrose. However, T. delbrueckii CCMA 0684 obtained a 13.5% increase in cell viability using only maltodextrin. The study showed that maltodextrin as a wall material was efficient in the microencapsulation of yeasts. It is possible to assume that maltose incorporation increased the cell viability of S. cerevisiae CCMA 0543 during storage.


Asunto(s)
Torulaspora , Café/química , Café/metabolismo , Fermentación , Maltosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Secado por Pulverización , Sacarosa/metabolismo , Torulaspora/metabolismo
19.
Int J Food Microbiol ; 379: 109839, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35868147

RESUMEN

The storage of microorganisms in liquid form is the main drawback of commercializing epiphytic coffee yeasts. This work aimed to evaluate the fermentative performance of microencapsulated yeasts by spray drying in a coffee peel and pulp media (CPM). The yeasts, Saccharomyces cerevisiae CCMA 0543, Torulaspora delbrueckii CCMA 0684, and Meyerozyma caribbica CCMA 1738, were microencapsulated using maltodextrin DE10 (MD), high maltose (MA), and whey powder (WP) as wall materials. A Central Composite Rotational Design (CCRD) was used to investigate the effect of operating parameters on the microcapsules' cell viability, drying yield, and water activity. Yeasts reached cell viability and drying yields above 90 and 50 %, respectively. WP maintained the cell viability of the three yeasts over 90 days of storage at room temperature (25 °C) and was selected as a wall material for the three yeasts. M. caribbica showed to be more sensitive to spray drying and less resistant to storage. Some differences were found in the fermentation of the CPM medium, but the microencapsulated yeasts maintained their biotechnological characteristics. Therefore, the microencapsulation of epiphytic coffee yeasts by spray drying was promising to be used in the coffee fermentation process.


Asunto(s)
Café , Torulaspora , Fermentación , Saccharomyces cerevisiae , Secado por Pulverización , Proteína de Suero de Leche
20.
Braz J Microbiol ; 53(4): 2173-2184, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269554

RESUMEN

In recent years, ample research has focused on applying wild (especially non-Saccharomyces) yeasts in producing alcoholic beverages. Common characteristics of wild yeast strains include simultaneous high production of fruity and floral aroma compounds and low ethanol production. In this study, mead starter cultures were selected based on preliminary screening of wild yeast strains from a Brazilian culture collection (n = 63) for their ability to produce aroma-active compounds. The selected strains included one strain of Saccharomyces cerevisiae and three non-Saccharomyces strains (Pichia jadinii, Torulaspora delbrueckii, and Kluyveromyces lactis). These strains were used to ferment honey must prepared with Aroeira honey, adjusted to 24°Brix, which took 36 days to complete. Single culture fermentations and co-fermentations with S. cerevisiae and non-Saccharomyces strains were carried out. The quality of the produced beverages was evaluated by sugar consumption and production of alcohols and organic acids, analyzed with high-performance liquid chromatography. The volatile organic compound composition was analyzed with gas chromatography-mass spectrometry. Meads with various ethanol amounts (4.7-11.0% v/v) and residual sugar contents (70.81-160.25 g l-1) were produced. In addition, in both single-strain fermentation and co-fermentation with S. cerevisiae, meads produced with either Torulaspora delbrueckii or Kluyveromyces lactis had a roughly three-fold higher content of honey-aroma compound phenethyl acetate and a higher hedonic impression score than meads produced with only S. cerevisiae. These results demonstrated non-Saccharomyces yeasts' ability to increase aroma complexity and improve the sensory quality of low-alcoholic meads.


Asunto(s)
Torulaspora , Vino , Odorantes/análisis , Saccharomyces cerevisiae , Levaduras , Fermentación , Etanol/análisis , Vino/análisis , Vino/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA