Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 150(5): 1002-15, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22921914

RESUMEN

In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Raíces de Plantas/citología , Secuencia de Aminoácidos , División Celular Asimétrica , Ciclina D/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ácidos Indolacéticos/metabolismo , Células del Mesófilo/metabolismo , Datos de Secuencia Molecular , Fosforilación , Raíces de Plantas/metabolismo , Alineación de Secuencia
2.
Plant J ; 118(1): 225-241, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38133904

RESUMEN

The allopolyploid okra (Abelmoschus esculentus) unveiled telomeric repeats flanking distal gene-rich regions and short interstitial TTTAGGG telomeric repeats, possibly representing hallmarks of chromosomal speciation. Ribosomal RNA (rRNA) genes organize into 5S clusters, distinct from the 18S-5.8S-28S units, indicating an S-type rRNA gene arrangement. The assembly, in line with cytogenetic and cytometry observations, identifies 65 chromosomes and a 1.45 Gb genome size estimate in a haploid sibling. The lack of aberrant meiotic configurations implies limited to no recombination among sub-genomes. k-mer distribution analysis reveals 75% has a diploid nature and 15% heterozygosity. The configurations of Benchmarking Universal Single-Copy Ortholog (BUSCO), k-mer, and repeat clustering point to the presence of at least two sub-genomes one with 30 and the other with 35 chromosomes, indicating the allopolyploid nature of the okra genome. Over 130 000 putative genes, derived from mapped IsoSeq data and transcriptome data from public okra accessions, exhibit a low genetic diversity of one single nucleotide polymorphisms per 2.1 kbp. The genes are predominantly located at the distal chromosome ends, declining toward central scaffold domains. Long terminal repeat retrotransposons prevail in central domains, consistent with the observed pericentromeric heterochromatin and distal euchromatin. Disparities in paralogous gene counts suggest potential sub-genome differentiation implying possible sub-genome dominance. Amino acid query sequences of putative genes facilitated phenol biosynthesis pathway annotation. Comparison with manually curated reference KEGG pathways from related Malvaceae species reveals the genetic basis for putative enzyme coding genes that likely enable metabolic reactions involved in the biosynthesis of dietary and therapeutic compounds in okra.


Asunto(s)
Abelmoschus , Abelmoschus/genética , Abelmoschus/metabolismo , Genoma , Telómero , Diploidia , Variación Genética
3.
Plant J ; 102(3): 480-492, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31820490

RESUMEN

Genome wide screening of pooled pollen samples from a single interspecific F1 hybrid obtained from a cross between tomato, Solanum lycopersicum and its wild relative, Solanum pimpinellifolium using linked read sequencing of the haploid nuclei, allowed profiling of the crossover (CO) and gene conversion (GC) landscape. We observed a striking overlap between cold regions of CO in the male gametes and our previously established F6 recombinant inbred lines (RILs) population. COs were overrepresented in non-coding regions in the gene promoter and 5'UTR regions of genes. Poly-A/T and AT rich motifs were found enriched in 1 kb promoter regions flanking the CO sites. Non-crossover associated allelic and ectopic GCs were detected in most chromosomes, confirming that besides CO, GC represents also a source for genetic diversity and genome plasticity in tomato. Furthermore, we identified processed break junctions pointing at the involvement of both homology directed and non-homology directed repair pathways, suggesting a recombination machinery in tomato that is more complex than currently anticipated.


Asunto(s)
Meiosis/fisiología , Solanum lycopersicum/citología , Solanum lycopersicum/genética , Regiones no Traducidas 5'/genética , Cromosomas de las Plantas/genética , Intercambio Genético , Genoma de Planta/genética , Genotipo , Meiosis/genética , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN
4.
Nature ; 515(7525): 125-129, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25156253

RESUMEN

During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip. In addition, auxin is also pivotal for tropic responses. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Diferenciación Celular , Movimiento Celular , Regulación de la Expresión Génica de las Plantas , Gravitropismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mitosis , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
5.
Plant Cell ; 25(11): 4469-78, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24285791

RESUMEN

Maintenance of mitotic cell clusters such as meristematic cells depends on their capacity to maintain the balance between cell division and cell differentiation necessary to control organ growth. In the Arabidopsis thaliana root meristem, the antagonistic interaction of two hormones, auxin and cytokinin, regulates this balance by positioning the transition zone, where mitotically active cells lose their capacity to divide and initiate their differentiation programs. In animals, a major regulator of both cell division and cell differentiation is the tumor suppressor protein RETINOBLASTOMA. Here, we show that similarly to its homolog in animal systems, the plant RETINOBLASTOMA-RELATED (RBR) protein regulates the differentiation of meristematic cells at the transition zone by allowing mRNA accumulation of AUXIN RESPONSE FACTOR19 (ARF19), a transcription factor involved in cell differentiation. We show that both RBR and the cytokinin-dependent transcription factor ARABIDOPSIS RESPONSE REGULATOR12 are required to activate the transcription of ARF19, which is involved in promoting cell differentiation and thus root growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Meristema/citología , Raíces de Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Histidina Quinasa , Meristema/genética , Meristema/metabolismo , Raíces de Plantas/citología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
PLoS Biol ; 11(11): e1001724, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24302889

RESUMEN

Quiescent long-term somatic stem cells reside in plant and animal stem cell niches. Within the Arabidopsis root stem cell population, the Quiescent Centre (QC), which contains slowly dividing cells, maintains surrounding short-term stem cells and may act as a long-term reservoir for stem cells. The RETINOBLASTOMA-RELATED (RBR) protein cell-autonomously reinforces mitotic quiescence in the QC. RBR interacts with the stem cell transcription factor SCARECROW (SCR) through an LxCxE motif. Disruption of this interaction by point mutation in SCR or RBR promotes asymmetric divisions in the QC that renew short-term stem cells. Analysis of the in vivo role of quiescence in the root stem cell niche reveals that slow cycling within the QC is not needed for structural integrity of the niche but allows the growing root to cope with DNA damage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Meristema/citología , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proliferación Celular , Técnicas de Silenciamiento del Gen , Meristema/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Nicho de Células Madre , Células Madre/fisiología
7.
Plant J ; 53(5): 828-41, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18036202

RESUMEN

Coordination between cell division and cell differentiation is crucial for growth and development of eukaryotic organisms. Progression through the different phases of cell division requires the specific degradation of proteins through the ubiquitin/proteasome 26S (Ub/26S) pathway. In plants, this pathway plays a key role in controlling several developmental processes and responses, including cell proliferation. SKP2A, an F-box protein, regulates the stability of the cell division E2FC-DPB transcription factor. Here, we show that the SKP2A forms a Skp, Cullin containing (SCF) complexin vivo that has E3 ubiquitin ligase activity. Interestingly, SKP2A is degraded through the Ub/26S pathway, and auxin regulates such degradation. SKP2A positively regulates cell division, at least in part by degrading the E2FC/DPB transcription repressor. Plants that overexpress SKP2A increase the number of cells in G2/M, reduce the level of ploidy and develop a higher number of lateral root primordia. Taken together, our results indicate that SKP2A is a positive regulator of cell division, and its stability is controlled by auxin-dependent degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , División Celular , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Meristema/citología , Meristema/metabolismo , Plantas Modificadas Genéticamente , Proteínas Ligasas SKP Cullina F-box/metabolismo
8.
Nucleic Acids Res ; 33(17): 5404-14, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16179646

RESUMEN

Initiation of eukaryotic DNA replication depends on the function of pre-replication complexes (pre-RC), one of its key component being the six subunits origin recognition complex (ORC). In spite of a significant degree of conservation among ORC proteins from different eukaryotic sources, the regulation of their availability varies considerably in different model systems and cell types. Here, we show that the six ORC genes of Arabidopsis thaliana are regulated at the transcriptional level during cell cycle and development. We found that Arabidopsis ORC genes, except AtORC5, contain binding sites for the E2F family of transcription factors. Expression of AtORC genes containing E2F binding sites peaks at the G1/S-phase. Analysis of AtORC gene expression in plants with reduced E2F activity, obtained by expressing a dominant negative version of DP, the E2F heterodimerization partner, and with increased E2F activity, obtained by inactivation of the retinoblastoma protein, led us to conclude that all AtORC genes, except AtORC5 are E2F targets. Interestingly, Arabidopsis contains two AtORC1 (a and b) genes, highly conserved at the amino acid level but with unrelated promoter sequences. AtORC1b expression is restricted to proliferating cells. However, AtORC1a is preferentially expressed in endoreplicating cells based on our analysis in endoreplicating tissues and in a mutant with altered endocycle pattern. This suggests a differential expression of the two ORC1 genes in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Sitios de Unión , Ciclo Celular/genética , Proteínas de Ciclo Celular/biosíntesis , Proliferación Celular , Células Cultivadas , Replicación del ADN , ADN Complementario/química , Proteínas de Unión al ADN/biosíntesis , Factores de Transcripción E2F , Regulación de la Expresión Génica de las Plantas , Complejo de Reconocimiento del Origen , Proteínas de Plantas , Regiones Promotoras Genéticas , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética
9.
Methods Mol Biol ; 1629: 83-103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28623581

RESUMEN

In plant biology, transient expression systems have become valuable approaches used routinely to rapidly study protein expression, subcellular localization, protein-protein interactions, and transcriptional activity prior to in vivo studies. When studying transcriptional regulation, luciferase reporter assays offer a sensitive readout for assaying promoter behavior in response to different regulators or environmental contexts and to confirm and assess the functional relevance of predicted binding sites in target promoters. This chapter aims to provide detailed methods for using luciferase reporter system as a rapid, efficient, and versatile assay to analyze transcriptional regulation of target genes by transcriptional regulators. We describe a series of optimized transient expression systems consisting of Arabidopsis thaliana protoplasts, infiltrated Nicotiana benthamiana leaves, and human HeLa cells to study the transcriptional regulations of two well-characterized transcriptional regulators SCARECROW (SCR) and SHORT-ROOT (SHR) on one of their targets, CYCLIN D6 (CYCD6).Here, we illustrate similarities and differences in outcomes when using different systems. The plant-based systems revealed that the SCR-SHR complex enhances CYCD6 transcription, while analysis in HeLa cells showed that the complex is not sufficient to strongly induce CYCD6 transcription, suggesting that additional, plant-specific regulators are required for full activation. These results highlight the importance of the system and suggest that including heterologous systems, such as HeLa cells, can provide a more comprehensive analysis of a complex gene regulatory network.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Plantas/genética , Transcripción Genética , Arabidopsis/genética , Ciclinas/genética , Perfilación de la Expresión Génica , Genes Reporteros , Células HeLa , Humanos , Plantas/metabolismo , Regiones Promotoras Genéticas , Protoplastos , Activación Transcripcional , Transfección
10.
PLoS One ; 3(1): e1383, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18167542

RESUMEN

Most modern eukaryotes diverged from a common ancestor that contained the alpha-proteobacterial endosymbiont that gave rise to mitochondria. The 'amitochondriate' anaerobic protist parasites that have been studied to date, such as Giardia and Trichomonas harbor mitochondrion-related organelles, such as mitosomes or hydrogenosomes. Yet there is one remaining group of mitochondrion-lacking flagellates known as the Preaxostyla that could represent a primitive 'pre-mitochondrial' lineage of eukaryotes. To test this hypothesis, we conducted an expressed sequence tag (EST) survey on the preaxostylid flagellate Trimastix pyriformis, a poorly-studied free-living anaerobe. Among the ESTs we detected 19 proteins that, in other eukaryotes, typically function in mitochondria, hydrogenosomes or mitosomes, 12 of which are found exclusively within these organelles. Interestingly, one of the proteins, aconitase, functions in the tricarboxylic acid cycle typical of aerobic mitochondria, whereas others, such as pyruvate:ferredoxin oxidoreductase and [FeFe] hydrogenase, are characteristic of anaerobic hydrogenosomes. Since Trimastix retains genetic evidence of a mitochondriate ancestry, we can now say definitively that all known living eukaryote lineages descend from a common ancestor that had mitochondria.


Asunto(s)
ADN Mitocondrial/genética , Eucariontes/genética , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Metabolismo Energético , Eucariontes/clasificación , Eucariontes/metabolismo , Etiquetas de Secuencia Expresada , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Homología de Secuencia de Aminoácido
11.
Plant Signal Behav ; 2(4): 273-4, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19704635

RESUMEN

Cell division is a highly regulated process that has to be coordinated with cell specification and differentiation for proper development and growth of the plants. Cell cycle regulation is carried out by key proteins that control cell cycle entry, progression and exit. This regulation is controlled at different stages such as gene expression, posttranslational modification of proteins and specific proteolysis. The G(1)/S and the G(2)/M transitions are critical checkpoints of the cell cycle that are controlled, among others, by the activity of cyclin-dependent kinases (CDK). Different CDK activities, still to be fully identified, impinge on the retinoblastoma (RBR)/E2F/DP pathway as well as on the programmed proteolysis pathway. The specific degradation of proteins through the ubiquitin pathway in plants, highly controlled in time and space, is emerging as a powerful mechanism to regulate the levels and the activity of several proteins, including many cell cycle regulators.

12.
Mol Microbiol ; 66(6): 1306-20, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18045382

RESUMEN

Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.


Asunto(s)
Amoeba/metabolismo , Mitocondrias/metabolismo , Orgánulos/metabolismo , Amoeba/genética , Amoeba/ultraestructura , Anaerobiosis , Animales , Chaperonina 60/genética , Chaperonina 60/metabolismo , Clonación Molecular , Electroforesis en Gel Bidimensional , Immunoblotting , Proteínas Hierro-Azufre/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/ultraestructura , Orgánulos/ultraestructura , Filogenia , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
13.
Plant Cell ; 18(9): 2224-35, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16920782

RESUMEN

The balance between cell proliferation, cell cycle arrest, and differentiation needed to maintain the organogenetic program depends on the coordination of gene expression, posttranslational modification, and specific proteolysis of cell cycle regulators. The G1/S and G2/M transitions are critical checkpoints controlled, in part, by cyclin-dependent kinases in the retinoblastoma (RBR)/E2F/DP pathway. Arabidopsis thaliana DPB is regulated by phosphorylation and targeted to proteasome-mediated proteolysis by the SCF(SKP2A) complex. In addition, DPB interacts in vivo with E2FC, because ectopic coexpression of E2FC and DPB produces severe developmental defects. To understand E2FC/DPB heterodimer function, we analyzed the effect of reducing E2FC mRNA levels with RNA interference. The e2fc-R plants developed organs with more but smaller cells and showed increased cell cycle marker gene expression and increased proliferative activity in developing leaves, meristems, and pericycle cells. This last feature produces plants with more lateral roots, consistent with an E2FC role in restricting lateral root initiation. The e2fc-R plants also show marked reductions in ploidy levels of mature leaves. These results indicate that the transition from cell division to the endocycle is sensitive to different pathways, E2FC/DPB being one of them. Our results show that E2FC/DPB is a key factor in controlling the balance between cell proliferation and the switch to the endocycle program.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/citología , División Celular/fisiología , Factores de Transcripción E2F/fisiología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Factores de Transcripción/fisiología , Ubiquitina/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Ciclina B/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Ácidos Indolacéticos/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Meristema/fisiología , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Ploidias , Interferencia de ARN , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA