Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioorg Med Chem Lett ; 27(16): 3629-3635, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28729055

RESUMEN

In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery.


Asunto(s)
Diseño de Fármacos , Pirazoles/síntesis química , Quinazolinonas/química , Tripanocidas/síntesis química , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Pirazoles/farmacología , Pirazoles/uso terapéutico , Quinazolinonas/síntesis química , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico , Relación Estructura-Actividad , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/tratamiento farmacológico
2.
Microbiol Spectr ; 12(1): e0167923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009959

RESUMEN

IMPORTANCE: The COVID-19 pandemic has revealed the lack of effective treatments against betacoronaviruses and the urgent need for new broad-spectrum antivirals. Natural products are a valuable source of bioactive compounds with pharmaceutical potential that may lead to the discovery of new antiviral agents. Specifically, compared to conventional synthetic molecules, microbial natural extracts possess a unique and vast chemical diversity and are amenable to large-scale production. The implementation of a high-throughput screening platform using the betacoronavirus OC43 in a human cell line infection model has provided proof of concept of the approach and has allowed for the rapid and efficient evaluation of 1,280 microbial extracts. The identification of several active compounds validates the potential of the platform for the search for new compounds with antiviral capacity.


Asunto(s)
Productos Biológicos , Coronavirus Humano OC43 , Humanos , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Pandemias , Línea Celular , Antivirales/farmacología
3.
Biochim Biophys Acta ; 1820(12): 2062-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23000572

RESUMEN

BACKGROUND: Leishmania donovani - the causative agent of visceral leishmaniasis - has several evolutionary characteristics that make the disease difficult to combat. Among these differences, a rare heterodimeric DNA topoisomerase IB has been reported thus opening a new promising field in the therapy of leishmaniasis. Several studies of the human enzyme have pointed to the importance of the linker domain in respect to camptothecin sensitivity. At present, it has been impossible to pinpoint the regions that make up the linker domain in Leishmania. METHODS: Several site-directed mutations as well as internal and linear truncations involving both subunits were assayed on both, relaxation activity and sensitivity to camptothecin. RESULTS: Truncations performed on the trypanosomatids conserved motif (RPPVVRS) of the small subunit of leishmanial DNA topoisomerase IB demonstrated that elimination of pentapeptide RPPVV produced a nonfunctional enzyme. However, the removal of the dipeptide RS led to an enzyme with reduced relaxation activity and less sensitivity to camptothecin. The basic structure, both sensitive to camptothecin and able to fully relax DNA, composed of amino acids 1-592 and 175-262 in the large and small subunits, respectively. CONCLUSION: It has been established that the region between amino acids 175 and 180 (RPPVV) of the small subunit plays a pivotal role in both interaction with the large subunit and sensitivity to camptothecin in Leishmania. GENERAL SIGNIFICANCE: The present report describes a functional analysis of the leishmanial DNA topoisomerase IB regions directly involved both in sensitivity to poisons and in the conformation of the linker domain.


Asunto(s)
Camptotecina/farmacología , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/metabolismo , Resistencia a Medicamentos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/enzimología , Fragmentos de Péptidos/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN Protozoario/química , ADN Protozoario/genética , Humanos , Mutagénesis Sitio-Dirigida , Mutación/genética , Fragmentos de Péptidos/genética , Inhibidores de Topoisomerasa I/farmacología
4.
Biochem Soc Trans ; 41(4): 934-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863159

RESUMEN

The complex life cycle of Trypanosoma brucei provides an excellent model system to understand signalling pathways that regulate development. We described previously the classical functions of TOR (target of rapamycin) 1 and TOR2 in T. brucei. In a more recent study, we described a novel TOR kinase, named TOR4, which regulates differentiation from the proliferative infective form to the quiescent form. In contrast with TOR1 loss-of-function, down-regulation of TOR4 triggers an irreversible differentiation process through the development of the insect pre-adapted quiescent form. TOR4 governs a signalling pathway distinct from those controlled by the conventional TOR complexes TORC1 and TORC2. Depletion of TOR4 induces all well-known characteristics of the quiescent developmental stage in trypanosomes, including expression of the PAD (proteins associated with differentiation) surface proteins and transcriptional down-regulation of the VSG (variant surface glycoprotein) gene. TOR4 kinase forms a structurally and functionally distinct complex named TORC4. TOR4 associates with LST8 (lethal with sec-13 protein 8) and other factors including an armadillo-domain-containing protein and the major vault protein, which probably serves as a scaffold for this kinase. Research in T. brucei, a protozoan parasite that diverged from the eukaryotic tree early in evolution, may help to uncover new functions of TOR kinases.


Asunto(s)
Serina-Treonina Quinasas TOR/metabolismo , Trypanosoma brucei brucei/enzimología , Animales , Estadios del Ciclo de Vida , Transducción de Señal , Trypanosoma brucei brucei/fisiología
5.
PLoS Negl Trop Dis ; 17(9): e0011592, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37713416

RESUMEN

Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.


Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma brucei brucei , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Macrólidos/farmacología
6.
Front Microbiol ; 14: 1149145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234530

RESUMEN

Acanthamoeba species, Naegleria fowleri, and Balamuthia mandrillaris are opportunistic pathogens that cause a range of brain, skin, eye, and disseminated diseases in humans and animals. These pathogenic free-living amoebae (pFLA) are commonly misdiagnosed and have sub-optimal treatment regimens which contribute to the extremely high mortality rates (>90%) when they infect the central nervous system. To address the unmet medical need for effective therapeutics, we screened kinase inhibitor chemotypes against three pFLA using phenotypic drug assays involving CellTiter-Glo 2.0. Herein, we report the activity of the compounds against the trophozoite stage of each of the three amoebae, ranging from nanomolar to low micromolar potency. The most potent compounds that were identified from this screening effort were: 2d (A. castellanii EC50: 0.92 ± 0.3 µM; and N. fowleri EC50: 0.43 ± 0.13 µM), 1c and 2b (N. fowleri EC50s: <0.63 µM, and 0.3 ± 0.21 µM), and 4b and 7b (B. mandrillaris EC50s: 1.0 ± 0.12 µM, and 1.4 ± 0.17 µM, respectively). With several of these pharmacophores already possessing blood-brain barrier (BBB) permeability properties, or are predicted to penetrate the BBB, these hits present novel starting points for optimization as future treatments for pFLA-caused diseases.

8.
Bioorg Med Chem Lett ; 22(1): 440-3, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22119463

RESUMEN

Twenty compounds selected as representative members of three series of long-chain 1,2-diamines, 2-amino-1-alkanols and 1-amino-2-alkanols structurally related to dihydrosphingosin, were synthesized and tested in vitro for their ability to inhibit the sleeping sickness parasites Trypanosoma bruceirhodesiense and Trypanosoma brucei gambiense. Eight compounds showed EC(50) values in the submicromolar range, with selectivity indexes up to 39 related to the respective cytotoxicity values for Vero cells. The parasite phenotype detected after treatment with the most potent compounds showed irreversible cell morphology alterations of the flagellar pocket that lead to inhibition of cell growth and parasite death.


Asunto(s)
Alcoholes/química , Química Farmacéutica/métodos , Diaminas/química , Trypanosoma brucei brucei/metabolismo , Animales , Muerte Celular , Chlorocebus aethiops , Diseño de Fármacos , Humanos , Modelos Químicos , Fenotipo , Factores de Tiempo , Tripanocidas/farmacología , Tripanosomiasis Africana/parasitología , Células Vero
9.
J Med Chem ; 64(13): 9404-9430, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34156862

RESUMEN

Neglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of Trypanosoma brucei, the parasite that causes HAT, through a high-throughput screen. We describe the hit-to-lead optimization of this series and the development and preclinical investigation of 29d, a potent antitrypanosomal compound with promising pharmacokinetic (PK) parameters. This compound was ultimately not progressed beyond in vivo PK studies due to its inability to penetrate the blood-brain barrier (BBB), critical for stage 2 HAT treatments.


Asunto(s)
Indoles/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
10.
J Med Chem ; 63(17): 9912-9927, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32786222

RESUMEN

Human African trypanosomiasis (HAT), or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and transmitted through the bite of infected tsetse flies. The disease is considered fatal if left untreated. To identify new chemotypes against Trypanosoma brucei, previously we identified 797 potent kinase-targeting inhibitors grouped into 59 clusters plus 53 singleton compounds with at least 100-fold selectivity over HepG2 cells. From this set of hits, a cluster of diaminopurine-derived compounds was identified. Herein, we report our medicinal chemistry investigation involving the exploration of structure-activity and structure-property relationships around one of the high-throughput screening (HTS) hits, N2-(thiophen-3-yl)-N6-(2,2,2-trifluoroethyl)-9H-purine-2,6-diamine (1, NEU-1106). This work led to the identification of a potent lead compound (4aa, NEU-4854) with improved in vitro absorption, distribution, metabolism, and excretion (ADME) properties, which was progressed into proof-of-concept translation of in vitro antiparasitic activity to in vivo efficacy.


Asunto(s)
Purinas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Células Hep G2 , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Prueba de Estudio Conceptual , Purinas/síntesis química , Purinas/metabolismo , Purinas/farmacocinética , Ratas , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Tripanocidas/farmacocinética
11.
J Med Chem ; 63(2): 756-783, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31846577

RESUMEN

From a high-throughput screen of 42 444 known human kinases inhibitors, a pyrazolo[1,5-b]pyridazine scaffold was identified to begin optimization for the treatment of human African trypanosomiasis. Previously reported data for analogous compounds against human kinases GSK-3ß, CDK-2, and CDK-4 were leveraged to try to improve the selectivity of the series, resulting in 23a which showed selectivity for T. b. brucei over these three human enzymes. In parallel, properties known to influence the absorption, distribution, metabolism, and excretion (ADME) profile of the series were optimized resulting in 20g being progressed into an efficacy study in mice. Though 20g showed toxicity in mice, it also demonstrated CNS penetration in a PK study and significant reduction of parasitemia in four out of the six mice.


Asunto(s)
Piridazinas/síntesis química , Piridazinas/farmacología , Tripanocidas/síntesis química , Tripanocidas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Reposicionamiento de Medicamentos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Leishmania donovani/efectos de los fármacos , Ratones , Modelos Moleculares , Piridazinas/farmacocinética , Ratas , Relación Estructura-Actividad , Especificidad por Sustrato , Distribución Tisular , Tripanocidas/farmacocinética , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/parasitología
12.
RSC Med Chem ; 11(8): 950-959, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479690

RESUMEN

Human African trypanosomiasis is a neglected tropical disease (NTD) that is fatal if left untreated. Although approximately 13 million people live in moderate- to high-risk areas for infection, current treatments are plagued by problems with safety, efficacy, and emerging resistance. In an effort to fill the drug development pipeline for HAT, we have expanded previous work exploring the chemotype represented by the compound NEU-1090, with a particular focus on improvement of absorption, distribution, metabolism and elimination (ADME) properties. These efforts resulted in several compounds with substantially improved aqueous solubility, although these modifications typically resulted in a loss of trypanosomal activity. We herein report the results of our investigation into the antiparasitic activity, toxicity, and ADME properties of this class of compounds in the interest of informing the NTD drug discovery community and avoiding duplication of effort.

13.
Mini Rev Med Chem ; 9(6): 674-86, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19519493

RESUMEN

Trypanosomatid (order Kinetoplastida)-borne neglected tropical diseases - African and American trypanosomiasis and leishmaniasis - are amongst the most devastating health threats of underdeveloped, developing and poor countries. Climatic changes due to global warming, tourism exchange and increasing migratory fluxes are re-distributing the endemic subtropical location of these diseases to a new scenario with a rising presence in developed countries during the last decades. In addition, the proved opportunistic transmission of these diseases through contaminated syringes shared by drug users, in combination with immunosuppression processes linked to HIV infections and the poor response to the typical treatments, point to AIDS patients as a sensitive sub-population prone to suffer from these diseases. DNA topoisomerases are the "molecular engineers" that unravel the DNA during replication and transcription. The mechanism of DNA unwinding includes the scission of a single DNA strand - type I topoisomerases - or both DNA strands - type II topoisomerases - establishing transient covalent bonds with the scissile end. Camptothecin and etoposide - two natural drugs whose semi-synthetic derivatives are currently used in cancer chemotherapy - target types I and II DNA-topoisomerases respectively, stabilizing ternary topoisomerase-DNA-drug covalent complexes, which irreversibly poison the enzymes. Several differences between parasite and host DNA topoisomerases have pointed to these enzymes as potential drug targets in Trypanosomatids. The unusual localization inside the mitochondria-like organellum - the kinetoplast - linked to mini and maxicircles, as well as the uncommon heterodimeric structure of the DNA topoisomerase IB subfamily, make these proteins unquestionable targets for drug intervention against trypanosomatids.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Infecciones por Protozoos/tratamiento farmacológico , Infecciones por Protozoos/parasitología , Inhibidores de Topoisomerasa I , Trypanosomatina/efectos de los fármacos , Trypanosomatina/enzimología , Animales , ADN-Topoisomerasas de Tipo I/metabolismo , Humanos
14.
PLoS Negl Trop Dis ; 13(2): e0007129, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30735501

RESUMEN

New treatments are needed for neglected tropical diseases (NTDs) such as Human African trypanosomiasis (HAT), Chagas disease, and schistosomiasis. Through a whole organism high-throughput screening campaign, we previously identified 797 human kinase inhibitors that grouped into 59 structural clusters and showed activity against T. brucei, the causative agent of HAT. We herein report the results of further investigation of one of these clusters consisting of substituted isatin derivatives, focusing on establishing structure-activity and -property relationship scope. We also describe their in vitro absorption, distribution, metabolism, and excretion (ADME) properties. For one isatin, NEU-4391, which offered the best activity-property profile, pharmacokinetic parameters were measured in mice.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tripanocidas/síntesis química , Tripanocidas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Femenino , Ratones , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/farmacocinética
15.
Biochimie ; 89(12): 1517-27, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17900785

RESUMEN

Leishmania donovani, the causative organism of visceral leishmaniasis, contains a unique heterodimeric DNA topoisomerase IB (LdTop1). The catalytically active enzyme consists of a large subunit (LdTop1L), which contains the non-conserved N-terminal end and a phylogenetically conserved core domain, and of a small subunit (LdTop1S) which harbours the C-terminal region with a characteristic tyrosine residue in the active site. Heterologous co-expression of LdTop1L and LdTop1S in a topoisomerase I deficient yeast strain, reconstitutes a fully functional enzyme which can be used for structural studies. The role played by the non-conserved N-terminal extension of LdTop1S in both relaxation activity and CPT sensitivity of LdTop1 has been examined co-expressing the full-length LdTop1L with several deletions of LdTop1S lacking growing sequences of the N-terminal end. The sequential deletion study shows that the first 174 amino acids of LdTop1S are dispensable in terms of relaxation activity and DNA cleavage. It is also described that the trapping of the covalent complex between LdTop1 and DNA by CPT requires a pentapeptide between amino acid residues 175 and 179 of LdTop1S. Our results suggest the crucial role played by the N-terminal extension of the small subunit of DNA topoisomerase I.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , Leishmania donovani/enzimología , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Camptotecina/farmacología , Clonación Molecular , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Eliminación de Gen , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo
16.
Medicina (B Aires) ; 67(6 Pt 2): 747-57, 2007.
Artículo en Español | MEDLINE | ID: mdl-18422072

RESUMEN

The intensive use of antiparasitic drugs is the main cause of the emergence of multiresistant parasite strains on those regions where these parasites are endemic. The aetiological agents of the so-called tropical diseases viz. malaria, cryptosporidiosis, sleeping sickness, Chagas disease or leishmaniasis, among others, are unicellular protozoan parasites with no immune-prophylactic treatment and where the chemotherapeutical treatment is still under controversy. At present, the chemotherapeutic approach to these diseases is expensive, has side or toxic effects and it does not provide economic profits to the Pharmaceuticals which then have no or scarce enthusiasm in R & D investments in this field. The identification of type I DNA-topoisomerases as promising drug targets is based on the excellent results obtained with camptothecin derivatives in anticancer therapy. The recent finding of significant structural differences between human type I DNA-topoisomerase and their counterparts in trypanosomatids has open a new field in drug discovery, the aim is to find structural insights to be targeted by new drugs. This review is an update of DNA-topoisomerases as potential chemotherapeutic targets against the most important protozoan agents of medical interest.


Asunto(s)
Antineoplásicos/farmacología , Eucariontes/enzimología , Inhibidores de Topoisomerasa I , Animales , Antineoplásicos/química , Reparación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Diseño de Fármacos , Eucariontes/genética , Humanos , Leishmania/enzimología , Leishmania/genética , Neoplasias/tratamiento farmacológico , Infecciones por Protozoos/parasitología , Relación Estructura-Actividad , Trypanosoma/enzimología , Trypanosoma/genética
17.
ACS Infect Dis ; 3(3): 225-236, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28110521

RESUMEN

Human African trypanosomiasis is a neglected tropical disease that is lethal if left untreated. Existing therapeutics have limited efficacy and severe associated toxicities. 2-(2-(((3-((1H-Benzo[d]imidazol-2-yl)amino)propyl)amino)methyl)-4,6-dichloro-1H-indol-1-yl)ethan-1-ol (NEU-1053) has recently been identified from a high-throughput screen of >42,000 compounds as a highly potent and fast-acting trypanocidal agent capable of curing a bloodstream infection of Trypanosoma brucei in mice. We have designed a library of analogues to probe the structure-activity relationship and improve the predicted central nervous system (CNS) exposure of NEU-1053. We report the activity of these inhibitors of T. brucei, the efficacy of NEU-1053 in a murine CNS model of infection, and identification of the target of NEU-1053 via X-ray crystallography.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , Tripanocidas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedades Desatendidas , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Tripanocidas/química , Trypanosoma brucei brucei/efectos de los fármacos
18.
Drug Discov Today ; 11(15-16): 733-40, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16846801

RESUMEN

Tropical diseases produced by kinetoplastid protozoa are among humanity's costliest banes, owing to high mortality and the economic burden resulting from morbidity. Drug resistant strains of parasites, together with insecticide-resistant vectors, are contributing to their increased prevalence in the developing world. Their extension now threatens industrialized countries because of opportunistic infections in immuno-compromised individuals. Current chemotherapy is expensive, has undesirable side effects and, in many patients, is only marginally effective. Based on the clinical success of camptothecin derivatives as anticancer agents, DNA topoisomerases have been identified as targets for drug development. The substantial differences in homology between trypanosome and leishmania DNA topoisomerase IB compared with the human form provides a new lead in the study of the structural determinants that can be targeted.


Asunto(s)
Inhibidores de Topoisomerasa I , Trypanosoma/enzimología , Animales , ADN-Topoisomerasas de Tipo I/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Leishmania/efectos de los fármacos , Leishmania/enzimología , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Estructura Molecular , Trypanosoma/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/parasitología
19.
PLoS Negl Trop Dis ; 5(8): e1297, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21886855

RESUMEN

BACKGROUND: Target repurposing utilizes knowledge of "druggable" targets obtained in one organism and exploits this information to pursue new potential drug targets in other organisms. Here we describe such studies to evaluate whether inhibitors targeting the kinase domain of the mammalian Target of Rapamycin (mTOR) and human phosphoinositide-3-kinases (PI3Ks) show promise against the kinetoplastid parasites Trypanosoma brucei, T. cruzi, Leishmania major, and L. donovani. The genomes of trypanosomatids encode at least 12 proteins belonging to the PI3K protein superfamily, some of which are unique to parasites. Moreover, the shared PI3Ks differ greatly in sequence from those of the human host, thereby providing opportunities for selective inhibition. METHODOLOGY/PRINCIPAL FINDINGS: We focused on 8 inhibitors targeting mTOR and/or PI3Ks selected from various stages of pre-clinical and clinical development, and tested them against in vitro parasite cultures and in vivo models of infection. Several inhibitors showed micromolar or better efficacy against these organisms in culture. One compound, NVP-BEZ235, displayed sub-nanomolar potency, efficacy against cultured parasites, and an ability to clear parasitemia in an animal model of T. brucei rhodesiense infection. CONCLUSIONS/SIGNIFICANCE: These studies strongly suggest that mammalian PI3/TOR kinase inhibitors are a productive starting point for anti-trypanosomal drug discovery. Our data suggest that NVP-BEZ235, an advanced clinical candidate against solid tumors, merits further investigation as an agent for treating African sleeping sickness.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Trypanosoma/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Animales , Antiprotozoarios/administración & dosificación , Elafina/antagonistas & inhibidores , Femenino , Humanos , Concentración 50 Inhibidora , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Parasitemia/tratamiento farmacológico , Pruebas de Sensibilidad Parasitaria , Inhibidores de Proteínas Quinasas/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos
20.
Curr Drug Targets ; 9(11): 966-78, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18991609

RESUMEN

African and South American trypanosomes and leishmanias are unicellular protozoan parasites, forming part of the order Kinetoplastida. These ancient eukaryotes are causative agents of some of the most devastating neglected Tropical Diseases called trypanosomiasis and leishmaniasis. Despite the efforts to develop effective vaccines, immunoprophylaxis is not even a method of prevention of these diseases at present. Current antiprotozoal chemotherapy is often expensive, has side or toxic effects and it does not provide economic profits to the Pharmaceuticals, which have scant enthusiasm in R + D investments in this field. The surprising finding of unusual bi-subunit type IB DNA-topoisomerase in kinetoplastids adds a new promising drug target to antiprotozoal chemotherapy. The remarkable differences between trypanosomal and leishmanial DNA-topoisomerase IB with respect to the one in the mammalian hosts, have provided a new lead in the study of structural determinants that can be effectively targeted. This review provides an update on recent progress in research in kinetoplastid's topoisomerase IB as potential chemotherapeutic target against this group of parasitic diseases.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Leishmania/enzimología , Infecciones por Protozoos/parasitología , Proteínas Protozoarias/metabolismo , Animales , ADN-Topoisomerasas de Tipo I/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Regulación Enzimológica de la Expresión Génica , Humanos , Leishmania/genética , Estructura Molecular , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Infecciones por Protozoos/tratamiento farmacológico , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Inhibidores de Topoisomerasa I
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA