RESUMEN
Several factors affect muscle protein synthesis (MPS) in the postabsorptive state. Extreme physical inactivity (e.g., bedrest) may reduce basal MPS, whereas walking may augment basal MPS. We hypothesized that outpatients would have a higher postabsorptive MPS than inpatients. To test this hypothesis, we conducted a retrospective analysis. We compared 152 outpatient participants who arrived at the research site the morning of the MPS assessment with 350 Inpatient participants who had an overnight stay in the hospital unit before the MPS assessment the following morning. We used stable isotopic methods and collected vastus lateralis biopsies â¼2 to 3 h apart to assess mixed MPS. MPS was â¼12% higher (P < 0.05) for outpatients than inpatients. Within a subset of participants, we discovered that after instruction to limit activity, outpatients (n = 13) took 800 to 900 steps in the morning to arrive at the unit, seven times more steps than inpatients (n = 12). We concluded that an overnight stay in the hospital as an inpatient is characterized by reduced morning activity and causes a slight but significant reduction in MPS compared with participants studied as outpatients. Researchers should be aware of physical activity status when designing and interpreting MPS results.NEW & NOTEWORTHY The postabsorptive muscle protein synthesis rate is lower in the morning after an overnight inpatient hospital stay compared with an outpatient visit. Although only a minimal amount of steps was conducted by outpatients (â¼900), this was enough to increase postabsorptive muscle protein synthesis rate.
Asunto(s)
Pacientes Internos , Proteínas Musculares , Humanos , Pacientes Ambulatorios , Estudios Retrospectivos , Biosíntesis de ProteínasRESUMEN
PURPOSE: Aerobic (AE) and resistance (RE) exercise elicit unique adaptations in skeletal muscle. The purpose here was to compare the post-exercise response of mTOR signaling and select autophagy markers in skeletal muscle to acute AE and RE. METHODS: In a randomized, cross-over design, six untrained men (27 ± 3 years) completed acute AE (40 min cycling, 70% HRmax) and RE (8 sets, 10 repetitions, 65% 1RM). Muscle biopsies were taken at baseline, and at 1 h and 4 h following each exercise. Western blot analyses were performed to examine total and phosphorylated protein levels. Upstream regulator analyses of skeletal muscle transcriptomics were performed to discern the predicted activation states of mTOR and FOXO3. RESULTS: Compared to AE, acute RE resulted in greater phosphorylation (P < 0.05) of mTORSer2448 at 4 h, S6K1Thr389 at 1 h, and 4E- BP1Thr37/46 during the post-exercise period. However, both AE and RE increased mTORSer2448 and S6K1Thr389 phosphorylation at 4 h (P < 0.05). Upstream regulator analyses revealed the activation state of mTOR was increased for both AE (z score, 2.617) and RE (z score, 2.789). No changes in LC3BI protein were observed following AE or RE (P > 0.05), however, LC3BII protein was decreased after both AE and RE at 1 h and 4 h (P < 0.05). p62 protein content was also decreased at 4 h following AE and RE (P < 0.05). CONCLUSION: Both acute AE and RE stimulate mTOR signaling and similarly impact select markers of autophagy. These findings indicate the early adaptive response of untrained human skeletal muscle to divergent exercise modes is not likely mediated through large differences in mTOR signaling or autophagy.
Asunto(s)
Autofagia/fisiología , Ejercicio Físico/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Adaptación Fisiológica/fisiología , Adulto , Humanos , Masculino , Entrenamiento de Fuerza/métodosRESUMEN
PURPOSE: The aim of this work was to investigate the predictive value of in-hospital posture and ambulatory activity for 30 days following discharge on functional status in older patients with heart failure. METHODS AND RESULTS: We undertook a prospective observational pilot study of 27 patients (78 ± 9.8 y, 51.8% female) admitted with heart failure. Participants wore 2 inclinometric accelerometers to record posture in-hospital and an ankle accelerometer to record ambulatory activity in-hospital and 30 days after discharge. Function was assessed on the day after discharge (Timed Up and Go [TUG], Short Physical Performance Battery [SPPB], hand grip strength) and 30 days after discharge. Length of stay was 5.1 ± 3.9 days. Participants spent 63.0 ± 19.2% of their hospital time lying down, 30.2 ± 18.7% sitting, 5.3 ± 4.2% standing, and 1.9 ± 8.6% ambulating. Thirty-day mean post-discharge stepping was 4890 ± 2285 steps/day. Each 10% increase in hospital lying time was associated with 0.7 s longer TUG time (95% confidence interval [CI] 0.2-1.9) at 30 days. Each 1000 additional daily steps in the post-discharge period was associated with a 0.8-point higher SPPB score (95% CI 0.1-1.0) at 30 days. Handgrip strength was unchanged. CONCLUSIONS: Older patients with heart failure were sedentary during hospitalization, which may contribute to decreased functional performance. Physical activity after discharge may minimize this negative effect.
Asunto(s)
Insuficiencia Cardíaca/rehabilitación , Postura/fisiología , Autocuidado/métodos , Caminata/fisiología , Acelerometría , Anciano , Femenino , Estudios de Seguimiento , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Alta del Paciente/tendencias , Proyectos Piloto , Estudios Prospectivos , Factores de TiempoRESUMEN
Much attention has been given to determining the influence of total protein intake and protein source on gains in lean body mass (LBM) and strength in response to resistance exercise training (RET). Acute studies indicate that whey protein, likely related to its higher leucine content, stimulates muscle protein synthesis to a greater extent than proteins such as soy and casein. Less clear is the extent to which the type of protein supplemented impacts strength and LBM in long-term studies (≥6 weeks). Therefore, a meta-analysis was conducted to compare the effect of supplementation with soy protein to animal protein supplementation on strength and LBM in response to RET. Nine studies involving 266 participants suitable for inclusion in the meta-analysis were identified. Five studies compared whey with soy protein, and four studies compared soy protein with other proteins (beef, milk, or dairy protein). Meta-analysis showed that supplementing RET with whey or soy protein resulted in significant increases in strength but found no difference between groups (bench press: χ2 = 0.02, p = .90; squat: χ2 = 0.22, p = .64). There was no significant effect of whey or soy alone (n = 5) on LBM change and no differences between groups (χ2 = 0.00, p = .96). Strength and LBM both increased significantly in the "other protein" and the soy groups (n = 9), but there were no between-group differences (bench: χ2 = 0.02, p = .88; squat: χ2 = 0.78, p = .38; and LBM: χ2 = 0.06, p = .80). The results of this meta-analysis indicate that soy protein supplementation produces similar gains in strength and LBM in response to RET as whey protein.
Asunto(s)
Suplementos Dietéticos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza , Proteínas de Soja/farmacología , Proteína de Suero de Leche/farmacología , Índice de Masa Corporal , Humanos , Músculo Esquelético/fisiologíaRESUMEN
Acetaminophen (APAP) given during chronic exercise reduces skeletal muscle collagen and cross-linking in rats. We propose that the effect of APAP on muscle extracellular matrix (ECM) may, in part, be mediated by dysregulation of the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). The purpose of this study was to evaluate the impact of APAP consumption during acute resistance exercise (RE) on several regulators of the ECM in human skeletal muscle. In a double-blinded, placebo-controlled, randomized crossover design, recreationally active men (n = 8, 25 ± 2 yr) performed two trials of knee extension. Placebo (PLA) or APAP (1,000 mg/6 h) was given for 24 h before and immediately following RE. Vastus lateralis biopsies were taken at baseline and 1 and 3 h post-RE. Quantitative RT-PCR was used to determine differences in mRNA expression. MMP-2, type I collagen, and type III collagen mRNA expression was not altered by exercise or APAP (P > 0.05). When compared with PLA, TIMP-1 expression was lower at 1 h post-RE during APAP conditions but greater than PLA at 3 h post-RE (P < 0.05). MMP-9 expression and protein levels were elevated at 3 h post-RE independent of treatment (P < 0.05). Lysyl oxidase expression was greater at 3 h post-RE during APAP consumption (P < 0.05) compared with PLA. MMP-2 and TIMP-1 protein was not altered by RE or APAP (P > 0.05). Phosphorylation of ERK1/2 and p38-MAPK increased (P < 0.05) with RE but was not influenced by APAP. Our findings do not support our hypothesis and suggest that short-term APAP consumption before RE has a small impact on the measured ECM molecules in human skeletal muscle following acute RE.
Asunto(s)
Acetaminofén/farmacología , Ejercicio Físico/fisiología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Adulto , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto JovenRESUMEN
The purpose of this study was to evaluate the role of TGF-ß1 in regulating tendon extracellular matrix after acute exercise. Wistar rats exercised (n = 15) on a treadmill for four consecutive days (60 min/day) or maintained normal cage activity. After each exercise bout, the peritendinous space of each Achilles tendon was injected with a TGF-ß1 receptor inhibitor or sham. Independent of group, tendons injected with inhibitor exhibited ~50% lower Smad 3 (Ser423/425) (P < 0.05) and 2.5-fold greater ERK1/2 phosphorylation (P < 0.05) when compared with sham (P < 0.05). Injection of the inhibitor did not alter collagen content in either group (P > 0.05). In exercised rats, hydroxylyslpyridinoline content and collagen III expression were lower (P < 0.05) in tendons injected with inhibitor when compared with sham. In nonexercised rats, collagen I and lysyl oxidase (LOX) expression was lower (P < 0.05) in tendons injected with inhibitor when compared with sham. Decorin expression was not altered by inhibitor in either group (P > 0.05). On the basis of evaluation of hematoxylin and eosin (H&E) stained cross sections, cell numbers were not altered by inhibitor treatment in either group (P > 0.05). Evaluation of H&E-stained sections revealed no effect of inhibitor on collagen fibril morphology. In contrast, scores for regional variation in cellularity decreased in exercised rats (P < 0.05). No differences in fiber arrangement, structure, and nuclei form were noted in either group (P > 0.05). Our findings suggest that TGF-ß1 signaling is necessary for the regulation of tendon cross-link formation, as well as collagen and LOX gene transcription in an exercise-dependent manner.
Asunto(s)
Tendón Calcáneo/fisiología , Colágeno Tipo I/metabolismo , Matriz Extracelular/fisiología , Condicionamiento Físico Animal/métodos , Proteína-Lisina 6-Oxidasa/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Proteínas de la Matriz Extracelular/metabolismo , Masculino , Esfuerzo Físico/fisiología , Ratas , Ratas Wistar , Factor de Crecimiento Transformador beta1/antagonistas & inhibidoresRESUMEN
PURPOSE: Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. Our goal was to determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover. METHODS: Healthy young men (n = 31) participated in supervised whole body progressive RET at 60-80% 1 repetition maximum (1-RM), 3 days/week for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET. RESULTS: RET increased strength (12-40%), LBM (~5%), MT (~15%) and myofiber CSA (~20%) (p < 0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21%, respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r = 0.555, p = 0.003) with the change in muscle thickness. CONCLUSION: Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training.
Asunto(s)
Proteínas Musculares/metabolismo , Músculo Cuádriceps/metabolismo , Entrenamiento de Fuerza , Absorciometría de Fotón , Humanos , Masculino , Fuerza Muscular , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/fisiología , Adulto JovenRESUMEN
BACKGROUND: To our knowledge the efficacy of soy-dairy protein blend (PB) supplementation with resistance exercise training (RET) has not been evaluated in a longitudinal study. OBJECTIVE: Our aim was to determine the effect of PB supplementation during RET on muscle adaptation. METHODS: In this double-blind randomized clinical trial, healthy young men [18-30 y; BMI (in kg/m(2)): 25 ± 0.5] participated in supervised whole-body RET at 60-80% 1-repetition maximum (1-RM) for 3 d/wk for 12 wk with random assignment to daily receive 22 g PB (n = 23), whey protein (WP) isolate (n = 22), or an isocaloric maltodextrin (carbohydrate) placebo [(MDP) n = 23]. Serum testosterone, muscle strength, thigh muscle thickness (MT), myofiber cross-sectional area (mCSA), and lean body mass (LBM) were assessed before and after 6 and 12 wk of RET. RESULTS: All treatments increased LBM (P < 0.001). ANCOVA did not identify an overall treatment effect at 12 wk (P = 0.11). There tended to be a greater change in LBM from baseline to 12 wk in the PB group than in the MDP group (0.92 kg; 95% CI: -0.12, 1.95 kg; P = 0.09); however, changes in the WP and MDP groups did not differ. Pooling data from combined PB and WP treatments showed a trend for greater change in LBM from baseline to 12 wk compared with MDP treatment (0.69 kg; 95% CI: -0.08, 1.46 kg; P = 0.08). Muscle strength, mCSA, and MT increased (P < 0.05) similarly for all treatments and were not different (P > 0.10) between treatments. Testosterone was not altered. CONCLUSIONS: PB supplementation during 3 mo of RET tended to slightly enhance gains in whole-body and arm LBM, but not leg muscle mass, compared with RET without protein supplementation. Although protein supplementation minimally enhanced gains in LBM of healthy young men, there was no enhancement of gains in strength. This trial was registered at clinicaltrials.gov as NCT01749189.
Asunto(s)
Suplementos Dietéticos , Ejercicio Físico , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza , Proteína de Suero de Leche/administración & dosificación , Adaptación Fisiológica , Adolescente , Adulto , Composición Corporal , Índice de Masa Corporal , Peso Corporal , Método Doble Ciego , Humanos , Masculino , Fuerza Muscular/efectos de los fármacos , Testosterona/sangre , Adulto JovenRESUMEN
Restriction of blood flow to a contracting muscle during low-intensity resistance exercise (BFR exercise) stimulates mTORC1 signaling and protein synthesis in human muscle within 3 h postexercise. However, there is a lack of mechanistic data to provide a direct link between mTORC1 activation and protein synthesis in human skeletal muscle following BFR exercise. Therefore, the primary purpose of this study was to determine whether mTORC1 signaling is necessary for stimulating muscle protein synthesis after BFR exercise. A secondary aim was to describe the 24-h time course response in muscle protein synthesis and breakdown following BFR exercise. Sixteen healthy young men were randomized to one of two groups. Both the control (CON) and rapamycin (RAP) groups completed BFR exercise; however, RAP was administered 16 mg of the mTOR inhibitor rapamycin 1 h prior to BFR exercise. BFR exercise consisted of four sets of leg extension exercise at 20% of 1 RM. Muscle biopsies were collected from the vastus lateralis before exercise and at 3, 6, and 24 h after BFR exercise. Mixed-muscle protein fractional synthetic rate increased by 42% at 3 h postexercise and 69% at 24 h postexercise in CON, whereas this increase was inhibited in the RAP group. Phosphorylation of mTOR (Ser(2448)) and S6K1 (Thr(389)) was also increased in CON but inhibited in RAP. Mixed-muscle protein breakdown was not significantly different across time or groups. We conclude that activation of mTORC1 signaling and protein synthesis in human muscle following BFR exercise is inhibited in the presence of rapamycin.
Asunto(s)
Ejercicio Físico/fisiología , Complejos Multiproteicos/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Adulto , Constricción , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto JovenRESUMEN
BACKGROUND: Postexercise protein or amino acid ingestion restores muscle protein synthesis in older adults and represents an important therapeutic strategy for aging muscle. However, the precise nutritional factors involved are unknown. OBJECTIVE: The purpose of this study was to determine the role of increased postexercise Leu ingestion on skeletal muscle myofibrillar protein synthesis (MyoPS), mammalian/mechanistic target of rapamycin complex 1 signaling, and amino acid transporter (AAT) mRNA expression in older men over a 24-h post-resistance exercise (RE) time course. METHODS: During a stable isotope infusion trial (l-[ring-(13)C6]Phe; l-[1-(13)C]Leu), older men performed RE and, at 1 h after exercise, ingested 10 g of essential amino acids (EAAs) containing either a Leu content similar to quality protein (control, 1.85 g of Leu, n = 7) or enriched Leu (LEU; 3.5 g of Leu, n = 8). Muscle biopsies (vastus lateralis) were obtained at rest and 2, 5, and 24 h after exercise. RESULTS: p70 S6 kinase 1 phosphorylation was increased in each group at 2 h (P < 0.05), whereas 4E binding protein 1 phosphorylation increased only in the LEU group (P < 0.05). MyoPS was similarly increased (â¼90%) above basal in each group at 5 h (P < 0.05) and remained elevated (â¼90%) at 24 h only in the LEU group (P < 0.05). The mRNA expression of select AATs was increased at 2 and 5 h in each group (P < 0.05), but AAT expression was increased at 24 h only in the LEU group (P < 0.05). CONCLUSIONS: Leu-enriched EAA ingestion after RE may prolong the anabolic response and sensitivity of skeletal muscle to amino acids in older adults. These data emphasize the potential importance of adequate postexercise Leu ingestion to enhance the response of aging muscle to preventive or therapeutic exercise-based rehabilitation programs. This trial was registered at clinicaltrials.gov as NCT00891696.
Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/farmacología , Ejercicio Físico/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Leucina/farmacología , Miofibrillas/metabolismo , Anciano , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/administración & dosificación , Aminoácidos/química , Humanos , Leucina/administración & dosificación , Leucina/química , Masculino , Miofibrillas/genéticaRESUMEN
OBJECTIVE: To assess intrarater reliability of ultrasound-determined measurements of skeletal muscle characteristics across different measurement outcomes, imaging techniques, and age groups. METHODS: 2D ultrasound images (B-mode) of the quadriceps were obtained from young (26 ± 4 year, n = 8 M, 8 F) and older (70 ± 7 year, n = 7 M, 5 F) adults on two occasions, separated by 6 ± 3 days. With participants in both standing and supine postures, images were collected from five anatomical sites along the anterior (two sites) and lateral (three sites) compartments of the thigh corresponding to 56%, 39%, and 22% (lateral only) of femur length. Images were analysed for muscle thickness, pennation angle, and echogenicity. Intraclass correlation coefficients (ICC) were used to assess reliability. RESULTS: Muscle thickness values were higher (p < 0.05) on images collected in the stand versus supine posture only for muscles of the anterior compartment, independent of age. Echogenicity values were higher (p < 0.05) in the vastus intermedius on images collected in the supine versus stand posture only in older adults. Pennation angle values were not impacted by imaging posture (p > 0.05). ICC values for thickness, echogenicity, and pennation angle were generally higher for analyses conducted on images collected in the supine versus stand posture. Imaging posture generated a greater difference in ICC values in the lateral versus anterior muscles and in older versus younger participants. CONCLUSION: Our findings suggest that participant posture during imaging impacts the absolute values and intrarater reliability of ultrasound-determined muscle characteristics in a muscle-specific fashion, and this effect is greater in older compared to younger individuals.
Asunto(s)
Envejecimiento , Músculo Cuádriceps , Músculo Cuádriceps/diagnóstico por imagen , Envejecimiento/patología , Ultrasonografía/normas , Variaciones Dependientes del Observador , Adulto Joven , Adulto , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Reproducibilidad de los ResultadosRESUMEN
Bed rest induces significant loss of leg lean mass in older adults. Systemic and tissue inflammation also accelerates skeletal muscle loss, but it is unknown whether inflammation is associated to inactivity-induced muscle atrophy in healthy older adults. We determined if short-term bed rest increases toll-like receptor 4 (TLR4) signaling and pro-inflammatory markers in older adult skeletal muscle biopsy samples. Six healthy, older adults underwent seven consecutive days of bed rest. Muscle biopsies (vastus lateralis) were taken after an overnight fast before and at the end of bed rest. Serum cytokine expression was measured before and during bed rest. TLR4 signaling and cytokine mRNAs associated with pro- and anti-inflammation and anabolism were measured in muscle biopsy samples using Western blot analysis and qPCR. Participants lost â¼4% leg lean mass with bed rest. We found that after bed rest, muscle levels of TLR4 protein expression and interleukin-6 (IL-6), nuclear factor-κB1, interleukin-10, and 15 mRNA expression were increased after bed rest (P < 0.05). Additionally, the cytokines interferon-γ, and macrophage inflammatory protein-1ß, were elevated in serum samples following bed rest (P < 0.05). We conclude that short-term bed rest in older adults modestly increased some pro- and anti-inflammatory cytokines in muscle samples while systemic changes in pro-inflammatory cytokines were mostly absent. Upregulation of TLR4 protein content suggests that bed rest in older adults increases the capacity to mount an exaggerated, and perhaps unnecessary, inflammatory response in the presence of specific TLR4 ligands, e.g., during acute illness.
Asunto(s)
Reposo en Cama/efectos adversos , Interleucina-6/biosíntesis , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Receptor Toll-Like 4/biosíntesis , Anciano , Anabolizantes/farmacología , Atrofia , Biopsia , Western Blotting , Citocinas/biosíntesis , Citocinas/fisiología , ADN Complementario/biosíntesis , ADN Complementario/genética , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , FN-kappa B/metabolismo , Reacción en Cadena de la Polimerasa , ARN/biosíntesis , ARN/aislamiento & purificación , Transducción de Señal/fisiologíaRESUMEN
PURPOSE OF REVIEW: To highlight recent research on amino acid sensing and signaling and the role of amino acid transporters in the regulation of human skeletal muscle protein metabolism. RECENT FINDINGS: The mechanisms that sense amino acid availability and activate mechanistic target of rapamycin complex 1 signaling and protein synthesis are emerging, with multiple new proteins and intracellular amino acid sensors recently identified. Amino acid transporters have a role in the delivery of amino acids to these intracellular sensors and new findings provide further support for amino acid transporters as possible extracellular amino acid sensors. There is growing evidence in human skeletal muscle that amino acid transporter expression is dynamic and responsive to various stimuli, indicating amino acid transporters may have a unique role in the regulation of human skeletal muscle adaptation. SUMMARY: There is a clear need to further examine the role of amino acid transporters in human skeletal muscle and their link to cellular amino acid sensing and signaling in the control of protein metabolism. A better understanding of amino acid transport and transporters will allow us to optimize nutritional strategies to accelerate muscle health and improve outcomes for clinical populations.
Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Músculo Esquelético/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
High-quality proteins such as soy, whey, and casein are all capable of promoting muscle protein synthesis postexercise by activating the mammalian target of rapamycin (mTORC1) signaling pathway. We hypothesized that a protein blend of soy and dairy proteins would capitalize on the unique properties of each individual protein and allow for optimal delivery of amino acids to prolong the fractional synthetic rate (FSR) following resistance exercise (RE). In this double-blind, randomized, clinical trial, 19 young adults were studied before and after ingestion of â¼19 g of protein blend (PB) or â¼18 g whey protein (WP) consumed 1 h after high-intensity leg RE. We examined mixed-muscle protein FSR by stable isotopic methods and mTORC1 signaling with western blotting. Muscle biopsies from the vastus lateralis were collected at rest (before RE) and at 3 postexercise time points during an early (0-2 h) and late (2-4 h) postingestion period. WP ingestion resulted in higher and earlier amplitude of blood branched-chain amino acid (BCAA) concentrations. PB ingestion created a lower initial rise in blood BCAA but sustained elevated levels of blood amino acids later into recovery (P < 0.05). Postexercise FSR increased equivalently in both groups during the early period (WP, 0.078 ± 0.009%; PB, 0.088 ± 0.007%); however, FSR remained elevated only in the PB group during the late period (WP, 0.074 ± 0.010%; PB, 0.087 ± 0.003%) (P < 0.05). mTORC1 signaling similarly increased between groups, except for no increase in S6K1 phosphorylation in the WP group at 5 h postexercise (P < 0.05). We conclude that a soy-dairy PB ingested following exercise is capable of prolonging blood aminoacidemia, mTORC1 signaling, and protein synthesis in human skeletal muscle and is an effective postexercise nutritional supplement.
Asunto(s)
Proteínas en la Dieta/administración & dosificación , Ejercicio Físico/fisiología , Proteínas Musculares/biosíntesis , Entrenamiento de Fuerza , Adolescente , Adulto , Aminoácidos de Cadena Ramificada/sangre , Caseínas/administración & dosificación , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Marcaje Isotópico , Cinética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Leche/administración & dosificación , Complejos Multiproteicos/metabolismo , Transducción de Señal , Proteínas de Soja/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Proteína de Suero de Leche , Adulto JovenRESUMEN
The loss of skeletal muscle size and function with aging and sarcopenia may be related, in part, to an age-related muscle protein synthesis impairment. In this review, we discuss to what extent aging affects skeletal muscle protein synthesis and how nutrition and exercise can be used strategically to overcome age-related protein synthesis impairments and slow the progression of sarcopenia.
Asunto(s)
Envejecimiento/fisiología , Ejercicio Físico/fisiología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Fenómenos Fisiológicos de la Nutrición/fisiología , Sarcopenia/metabolismo , HumanosRESUMEN
Skeletal muscle atrophy during bed rest is attributed, at least in part, to slower basal muscle protein synthesis (MPS). Essential amino acids (EAA) stimulate mammalian target of rapamycin (mTORC1) signaling, amino acid transporter expression, and MPS and are necessary for muscle mass maintenance, but there are no data on the effect of inactivity on this anabolic mechanism. We hypothesized that bed rest decreases muscle mass in older adults by blunting the EAA stimulation of MPS through reduced mTORC1 signaling and amino acid transporter expression in older adults. Six healthy older adults (67 ± 2 yr) participated in a 7-day bed rest study. We used stable isotope tracers, Western blotting, and real-time qPCR to determine the effect of bed rest on MPS, muscle mTORC1 signaling, and amino acid transporter expression and content in the postabsorptive state and after acute EAA ingestion. Bed rest decreased leg lean mass by â¼4% (P < 0.05) and increased postabsorptive mTOR protein (P < 0.05) levels while postabsorptive MPS was unchanged (P > 0.05). Before bed rest acute EAA ingestion increased MPS, mTOR (Ser(2448)), S6 kinase 1 (Thr(389), Thr(421)/Ser(424)), and ribosomal protein S6 (Ser(240/244)) phosphorylation, activating transcription factor 4, L-type amino acid transporter 1 and sodium-coupled amino acid transporter 2 protein content (P < 0.05). However, bed rest blunted the EAA-induced increase in MPS, mTORC1 signaling, and amino acid transporter protein content. We conclude that bed rest in older adults significantly attenuated the EAA-induced increase in MPS with a mechanism involving reduced mTORC1 signaling and amino acid transporter protein content. Together, our data suggest that a blunted EAA stimulation of MPS may contribute to muscle loss with inactivity in older persons.
Asunto(s)
Aminoácidos Esenciales/metabolismo , Reposo en Cama , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Proteínas/metabolismo , Factores de Edad , Anciano , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Persona de Mediana Edad , Complejos Multiproteicos , Atrofia Muscular/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas/genética , ARN Mensajero/análisis , Valores de Referencia , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TORRESUMEN
INTRODUCTION: Resistance exercise (RE) stimulates a muscle protein anabolic response partially through enhanced satellite cell (SC) activity, however, age- and gender-related changes in SC content over a 24-h time course are not known. METHODS: Ten young (27 ± 2 years) men and women and 11 older (70 ± 2 years) men and women performed an acute bout of RE. Myofiber and SC characteristics were determined from muscle biopsies of the vastus lateralis using immunohistochemistry. Immunoblotting was used to determine phosphorylation of cyclin-dependent kinase-2 and protein expression of p27(Kip1) and cyclin D1. RESULTS: Pax7+ SC were significantly increased in young men 24 h following RE. Percent SC were significantly increased in older women at 6 and 24 h following RE. Aging decreased myonuclear domain and increased protein expression of p27(Kip1) . CONCLUSIONS: An acute bout of RE increases SC content in young men at 24 h and older women at 6 and 24 h.
Asunto(s)
Envejecimiento/metabolismo , Ejercicio Físico/fisiología , Factor de Transcripción PAX7/metabolismo , Músculo Cuádriceps/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Adulto , Factores de Edad , Anciano , Femenino , Humanos , Masculino , Fosforilación , Entrenamiento de FuerzaRESUMEN
Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibiting drugs in double-blind placebo-controlled fashion: placebo (67 ± 2 yr; n = 12), acetaminophen (64 ± 1 yr; n = 11; 4 g/day), and ibuprofen (64 ± 1 yr; n = 13; 1.2 g/day). Compliance with the resistance training program (100%) and drug consumption (via digital video observation, 94%), and resistance training intensity were similar (P > 0.05) for all three groups. Drug consumption unexpectedly increased muscle volume (acetaminophen: 109 ± 14 cm(3), 12.5%; ibuprofen: 84 ± 10 cm(3), 10.9%) and muscle strength (acetaminophen: 19 ± 2 kg; ibuprofen: 19 ± 2 kg) to a greater extent (P < 0.05) than placebo (muscle volume: 69 ± 12 cm(3), 8.6%; muscle strength: 15 ± 2 kg), when controlling for initial muscle size and strength. Follow-up analysis of muscle biopsies taken from the vastus lateralis before and after training showed muscle protein content, muscle water content, and myosin heavy chain distribution were not influenced (P > 0.05) by drug consumption. Similarly, muscle content of the two known enzymes potentially targeted by the drugs, COX-1 and -2, was not influenced (P > 0.05) by drug consumption, although resistance training did result in a drug-independent increase in COX-1 (32 ± 8%; P < 0.05). Drug consumption did not influence the size of the nonresistance-trained hamstring muscles (P > 0.05). Over-the-counter doses of acetaminophen or ibuprofen, when consumed in combination with resistance training, do not inhibit and appear to enhance muscle hypertrophy and strength gains in older adults. The present findings coupled with previous short-term exercise studies provide convincing evidence that the COX pathway(s) are involved in the regulation of muscle protein turnover and muscle mass in humans.
Asunto(s)
Acetaminofén/administración & dosificación , Inhibidores de la Ciclooxigenasa/administración & dosificación , Ejercicio Físico , Ibuprofeno/administración & dosificación , Fuerza Muscular/efectos de los fármacos , Músculo Cuádriceps/efectos de los fármacos , Entrenamiento de Fuerza , Adaptación Fisiológica , Factores de Edad , Anciano , Biopsia , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Método Doble Ciego , Esquema de Medicación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cadenas Pesadas de Miosina/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Músculo Cuádriceps/crecimiento & desarrollo , Factores de TiempoRESUMEN
PURPOSE OF REVIEW: To highlight the recent research pertaining to the cellular mechanisms linking amino acid availability, mTORC1 signaling, and muscle protein metabolism. RECENT FINDINGS: Activation of the mTORC1 pathway in response to amino acids may be dependent upon cellular relocalization of mTORC1, a process that appears to involve the Rag GTPases. Recent studies have also identified other intracellular proteins, such as hVps34 and MAP4K3, and specific amino acid transporters as necessary links between amino acid availability and mTORC1. In human skeletal muscle, it appears that mTORC1 activity increases the expression of several amino acid transporters, which may be an important adaptive response to sensitize muscle to a subsequent increase in amino acid availability. SUMMARY: The precise cellular mechanisms linking amino acids to mTORC1 signaling and muscle protein metabolism are currently not well understood. More defined cellular mechanisms are beginning to emerge suggesting a role for several intracellular proteins including hVps34, MAP4K3, and Rag GTPases. Additionally, specific amino acid transporters may have a role both upstream and downstream of mTORC1. Continued investigation into the precise cellular mechanisms linking amino acid availability and muscle protein metabolism will help facilitate improvements in existing therapies for conditions of muscle wasting.
Asunto(s)
Aminoácidos Esenciales/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transporte Biológico , GTP Fosfohidrolasas/metabolismo , Humanos , Transducción de SeñalRESUMEN
The relationship between mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis during instances of amino acid surplus in humans is based solely on correlational data. Therefore, the goal of this study was to use a mechanistic approach specifically designed to determine whether increased mTORC1 activation is requisite for the stimulation of muscle protein synthesis following L-essential amino acid (EAA) ingestion in humans. Examination of muscle protein synthesis and signaling were performed on vastus lateralis muscle biopsies obtained from 8 young (25 ± 2 y) individuals who were studied prior to and following ingestion of 10 g of EAA during 2 separate trials in a randomized, counterbalanced design. The trials were identical except during 1 trial, participants were administered a single oral dose of a potent mTORC1 inhibitor (rapamycin) prior to EAA ingestion. In response to EAA ingestion, an ~60% increase in muscle protein synthesis was observed during the control trial, concomitant with increased phosphorylation of mTOR (Ser(2448)), ribosomal S6 kinase 1 (Thr(389)), and eukaryotic initiation factor 4E binding protein 1 (Thr(37/46)). In contrast, prior administration of rapamycin completely blocked the increase in muscle protein synthesis and blocked or attenuated activation of mTORC1-signaling proteins. The inhibition of muscle protein synthesis and signaling was not due to differences in either extracellular or intracellular amino acid availability, because these variables were similar between trials. These data support a fundamental role for mTORC1 activation as a key regulator of human muscle protein synthesis in response to increased EAA availability. This information will be useful in the development of evidence-based nutritional therapies targeting mTORC1 to counteract muscle wasting associated with numerous clinical conditions.