Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(12): e2205761, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587985

RESUMEN

Engineered surfaces that repel pathogens are of great interest due to their role in mitigating the spread of infectious diseases. A robust, universal, and scalable omniphobic spray coating with excellent repellency against water, oil, and pathogens is presented. The coating is substrate-independent and relies on hierarchically structured polydimethylsiloxane (PDMS) microparticles, decorated with gold nanoparticles (AuNPs). Wettability studies reveal the relationship between surface texturing of micro- and/or nano-hierarchical structures and the omniphobicity of the coating. Studies of pathogen transfer with bacteria and viruses reveal that an uncoated contaminated glove transfers pathogens to >50 subsequent surfaces, while a coated glove picks up 104 (over 99.99%) less pathogens upon first contact and transfers zero pathogens after the second touch. The developed coating also provides excellent stability under harsh conditions. The remarkable anti-pathogen properties of this surface combined with its ease of implementation, substantiate its use for the prevention of surface-mediated transmission of pathogens.


Asunto(s)
Oro , Nanopartículas del Metal , Propiedades de Superficie , Interacciones Hidrofóbicas e Hidrofílicas , Tacto
2.
Angew Chem Int Ed Engl ; 62(20): e202300828, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36932982

RESUMEN

An Au-on-Au tip sensor is developed for the detection of Salmonella typhimurium (Salmonella), using a new synthetic nucleic acid probe (NAP) as a linker for the immobilization of a DNA-conjugated Au nanoparticle (AuNP) onto a DNA-attached thin Au layer inside a pipette tip. In the presence of Salmonella, RNase H2 from Salmonella (STH2) cleaves the NAP and the freed DNA-conjugated AuNP can be visually detected by a paper strip. This portable biosensor does not require any electronic, electrochemical or optical equipment. It delivers a detection limit of 3.2×103  CFU mL-1 for Salmonella in 1 h without cell-culturing or signal amplification and does not show cross-reactivity with several control bacteria. Further, the sensor reliably detects Salmonella spiked in food samples, such as ground beef and chicken, milk, and eggs. The sensor can be reused and is stable at ambient temperature, showing its potential as a point-of-need device for the prevention of food poisoning by Salmonella.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Animales , Bovinos , Colorimetría , ADN , Oro , Límite de Detección , Sondas de Ácido Nucleico , Salmonella typhimurium/genética , Microbiología de Alimentos
3.
Small ; 18(15): e2108112, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35224860

RESUMEN

The surface fouling of biomedical devices has been an ongoing issue in healthcare. Bacterial and blood adhesion in particular, severely impede the performance of such tools, leading to poor patient outcomes. Various structural and chemical modifications have been shown to reduce fouling, but all existing strategies lack the combination of physical, chemical, and economic traits necessary for widespread use. Herein, a lubricant infused, hierarchically micro- and nanostructured polydimethylsiloxane surface is presented. The surface is easy to produce and exhibits the high flexibility and optical transparency necessary for incorporation into various biomedical tools. Tests involving two clinically relevant, priority pathogens show up to a 98.5% reduction in the biofilm formation of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. With blood, the surface reduces staining by 95% and suppresses thrombin generation to background levels. Furthermore, the surface shows applicability within applications such as catheters, extracorporeal circuits, and microfluidic devices, through its effectiveness in dynamic conditions. The perfusion of bacterial media shows up to 96.5% reduction in bacterial adhesion. Similarly, a 95.8% reduction in fibrin networks is observed following whole blood perfusion. This substrate stands to hold high applicability within biomedical systems as a means to prevent fouling, thus improving performance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Trombosis , Adhesión Bacteriana , Biopelículas , Dimetilpolisiloxanos , Humanos , Propiedades de Superficie
4.
Small ; 16(45): e2003844, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33078567

RESUMEN

Recent studies have shown a correlation between elevated interleukin 6 (IL-6) concentrations and the risk of respiratory failure in COVID-19 patients. Therefore, detection of IL-6 at low concentrations permits early diagnosis of worst-case outcome in viral respiratory infections. Here, a versatile biointerface is presented that eliminates nonspecific adhesion and thus enables immunofluorescence detection of IL-6 in whole human plasma or whole human blood during coagulation, down to a limit of detection of 0.5 pg mL-1 . The sensitivity of the developed lubricant-infused biosensor for immunofluorescence assays in detecting low molecular weight proteins such as IL-6 is facilitated by i) producing a bioink in which the capture antibody is functionalized by an epoxy-based silane for covalent linkage to the fluorosilanized surface and ii) suppressing nonspecific adhesion by patterning the developed bioink into a lubricant-infused coating. The developed biosensor addresses one of the major challenges for biosensing in complex fluids, namely nonspecific adhesion, therefore paving the way for highly sensitive biosensing in complex fluids.


Asunto(s)
Anticuerpos/metabolismo , Técnicas Biosensibles/métodos , Interleucina-6/sangre , Lubricantes/química , Microtecnología , Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Espectroscopía de Fotoelectrones , Polimetil Metacrilato/química , Estándares de Referencia
5.
Small ; 16(50): e2004886, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33230941

RESUMEN

Liquid repellant surfaces have been shown to play a vital role for eliminating thrombosis on medical devices, minimizing blood contamination on common surfaces as well as preventing non-specific adhesion. Herein, an all solution-based, easily scalable method for producing liquid repellant flexible films, fabricated through nanoparticle deposition and heat-induced thin film wrinkling that suppress blood adhesion, and clot formation is reported. Furthermore, superhydrophobic and hydrophilic surfaces are combined onto the same substrate using a facile streamlined process. The patterned superhydrophobic/hydrophilic surfaces show selective digitization of droplets from various solutions with a single solution dipping step, which provides a route for rapid compartmentalization of solutions into virtual wells needed for high-throughput assays. This rapid solution digitization approach is demonstrated for detection of Interleukin 6. The developed liquid repellant surfaces are expected to find a wide range of applications in high-throughput assays and blood contacting medical devices.

6.
Anal Chem ; 91(16): 10395-10400, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31318197

RESUMEN

Protein and peptide adhesion is a major factor contributing to sample loss during proteomic sample preparation workflows. Sample loss often has detrimental effects on the quality of proteomic analysis by compromising protein identification and data reproducibility. When starting with a low sample amount, only the most abundant proteins can be identified, which often offers little insights for biological research. Although the general idea about severe sample loss from low amount of starting material is widely presumed in the proteomics field, quantitative assessment on the impact of sample loss has been poorly investigated. In the present study, we have quantitatively assessed sample loss during each step of a conventional in-solution sample preparation workflow using bicinchoninic acid (BCA) and targeted LC/MS/MS protein and peptide assays. According to our assessment, for starting materials of ∼1000 mammalian cells, surface adhesion, along with desalting and speed-vacuum drying steps, all contribute heavily to sample loss, in particular for low-abundance proteins. With this knowledge, we have adapted slippery liquid infused porous surface (SLIPS) treatment, commercial LoBind tubes, and in-line desalting during sample processing. With these improvements, we were able to use a conventional in-solution sample handling method to identify on average 829 proteins with 1000 U2OS osteosarcoma cells (∼100 ng) with 75-min LC/MS/MS runs, an 11-fold increase in protein identification. Our optimized in-solution workflow is straightforward and also much less equipment- and technique-demanding than other advanced sample preparation protocols in the field.


Asunto(s)
Osteoblastos/química , Péptidos/aislamiento & purificación , Proteínas/aislamiento & purificación , Proteómica/métodos , Línea Celular Tumoral , Cromatografía Liquida , Humanos , Quinolinas/química , Reproducibilidad de los Resultados , Manejo de Especímenes/normas , Espectrometría de Masas en Tándem , Flujo de Trabajo
7.
Small ; 15(51): e1905562, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31773877

RESUMEN

New surface coatings that enhance hemocompatibility and biofunctionality of synthetic vascular grafts such as expanded poly(tetrafluoroethylene) (ePTFE) and poly(ethylene terephthalate) (PET) are urgently needed. Lubricant-infused surfaces prevent nontargeted adhesion and enhance the biocompatibility of blood-contacting surfaces. However, limited success has been made in incorporating biofunctionality onto these surfaces and generating biofunctional lubricant-infused coatings that both prevent nonspecific adhesion and enhance targeted binding of biomolecules remains a challenge. Here, a new generation of fluorosilanized lubricant-infused PET surfaces with built-in biofunctional nanoprobes is reported. These surfaces are synthesized by starting with a self-assembled monolayer of fluorosilane that is partially etched using plasma modification technique, thereby creating a hydroxyl-terminated fluorosilanized PET surface. Simultaneously, silanized nanoprobes are produced by amino-silanizing anti-CD34 antibody in solution and directly coupling the anti-CD34-aminosilane nanoprobes onto the hydroxyl terminated, fluorosilanized PET surface. The PET surfaces are then lubricated, creating fluorosilanized biofunctional lubricant-infused PET substrates. Compared with unmodified PET surfaces, the designed biofunctional lubricant-infused PET surfaces significantly attenuate thrombin generation and blood clot formation and promote targeted binding of endothelial cells from human whole blood.


Asunto(s)
Materiales Biocompatibles/química , Lubricantes/química , Tereftalatos Polietilenos/química , Politetrafluoroetileno/química , Trombina/química
8.
Adv Mater ; 36(1): e2300875, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37085965

RESUMEN

Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.


Asunto(s)
Embalaje de Alimentos , Calidad de los Alimentos , Humanos , Aminas Biogénicas , Embalaje de Medicamentos
9.
Nat Protoc ; 19(6): 1591-1622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38413781

RESUMEN

Engineered by nature, biological entities are exceptional building blocks for biomaterials. These entities can impart enhanced functionalities on the final material that are otherwise unattainable. However, preserving the bioactive functionalities of these building blocks during the material fabrication process remains a challenge. We describe a high-throughput protocol for the bottom-up self-assembly of highly concentrated phages into microgels while preserving and amplifying their inherent antimicrobial activity and biofunctionality. Each microgel is comprised of half a million cross-linked phages as the sole structural component, self-organized in aligned bundles. We discuss common pitfalls in the preparation procedure and describe optimization processes to ensure the preservation of the biofunctionality of the phage building blocks. This protocol enables the production of an antimicrobial spray containing the manufactured phage microgels, loaded with potent virulent phages that effectively reduced high loads of multidrug-resistant Escherichia coli O157:H7 on red meat and fresh produce. Compared with other microgel preparation methods, our protocol is particularly well suited to biological materials because it is free of organic solvents and heat. Bench-scale preparation of base materials, namely microporous films (the template for casting microgels) and pure concentrated phage suspension, requires 3.5 h and 5 d, respectively. A single production run, that yields over 1,750,000 microgels, ranges from 2 h to 2 d depending on the rate of cross-linking chemistry. We expect that this platform will address bottlenecks associated with shelf-stability, preservation and delivery of phage for antimicrobial applications, expanding the use of phage for prevention and control of bacterial infections and contaminants.


Asunto(s)
Bacteriófagos , Microgeles , Microgeles/química , Escherichia coli O157/virología , Escherichia coli O157/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Descontaminación/métodos , Microbiología de Alimentos/métodos
10.
Sci Rep ; 14(1): 8277, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594334

RESUMEN

With both foodborne illness and food spoilage detrimentally impacting human health and the economy, there is growing interest in the development of in situ sensors that offer real-time monitoring of food quality within enclosed food packages. While oligonucleotide-based fluorescent sensors have illustrated significant promise, the development of such on-food sensors requires consideration towards sensing-relevant fluorescence properties of target food products-information that has not yet been reported. To address this need, comprehensive fluorescence profiles for various contamination-prone food products are established in this study across several wavelengths and timepoints. The intensity of these food backgrounds is further contextualized to biomolecule-mediated sensing using overlaid fluorescent oligonucleotide arrays, which offer perspective towards the viability of distinct wavelengths and fluorophores for in situ food monitoring. Results show that biosensing in the Cyanine3 range is optimal for all tested foods, with the Cyanine5 range offering comparable performance with meat products specifically. Moreover, recognizing that mass fabrication of on-food sensors requires rapid and simple deposition of sensing agents onto packaging substrates, RNA-cleaving fluorescent nucleic acid probes are successfully deposited via microcontact printing for the first time. Direct incorporation onto food packaging yields cost-effective sensors with performance comparable to ones produced using conventional deposition strategies.


Asunto(s)
Contaminación de Alimentos , Oligonucleótidos , Humanos , Contaminación de Alimentos/análisis , Colorantes Fluorescentes , Calidad de los Alimentos , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
ACS Appl Mater Interfaces ; 15(48): 55287-55296, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37976404

RESUMEN

Healthcare-acquired infections place a significant burden on the cost and quality of patient care in hospitals. Reducing contamination on surfaces within healthcare environments is critical for halting the spread of these infections. Herein, we report a bifunctional─repel and kill─surface developed using photoactive TiO2 nanoparticles integrated into a hierarchical scaffold (OmniKill). To quantify the repellency of OmniKill, we developed a touch-based assay, capable of simulating the transfer of individual pathogens, multiple pathogens, or pathogen-latent fecal matter from hands to surfaces. OmniKill repels bacterial pathogens by at least 2.77-log (99.8%). The photoactive material within OmniKill further reduces the viability of transferred pathogens on the surface by an additional 2.43-log (99.6%) after 1 h of light exposure. The antipathogenic effects─repel and kill─remain robust under complex biological contaminates such as feces. These findings show the potential use of OmniKill in reducing the physical transmission of bacterial pathogens in healthcare settings.


Asunto(s)
Antiinfecciosos , Humanos , Bacterias , Propiedades de Superficie
12.
Adv Mater ; 35(40): e2302641, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37358057

RESUMEN

With food production shifting away from traditional farm-to-table approaches to efficient multistep supply chains, the incidence of food contamination has increased. Consequently, pathogen testing via inefficient culture-based methods has increased, despite its lack of real-time capabilities and need for centralized facilities. While in situ pathogen detection would address these limitations and enable individual product monitoring, accurate detection within unprocessed, packaged food products without user manipulation has proven elusive. Herein, "Lab-in-a-Package" is presented, a platform capable of sampling, concentrating, and detecting target pathogens within closed food packaging, without intervention. This system consists of a newly designed packaging tray and reagent-infused membrane that can be paired universally with diverse pathogen sensors. The inclined food packaging tray maximizes fluid localization onto the sensing interface, while the membrane acts as a reagent-immobilizing matrix and an antifouling barrier for the sensor. The platform is substantiated using a newly discovered Salmonella-responsive nucleic acid probe, which enables hands-free detection of 103 colony forming units (CFU) g-1 target pathogen in a packaged whole chicken. The platform remains effective when contamination is introduced with toolsand surfaces, ensuring widespread efficacy. Its real-world use for in situ detection is simulated using a handheld fluorescence scanner with smartphone connectivity.


Asunto(s)
Pollos , Microbiología de Alimentos , Animales , Salmonella , Contaminación de Alimentos/análisis , Embalaje de Alimentos
13.
ACS Appl Mater Interfaces ; 15(12): 16253-16265, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926806

RESUMEN

Surface-mediated transmission of pathogens is a major concern with regard to the spread of infectious diseases. Current pathogen prevention methods on surfaces rely on the use of biocides, which aggravate the emergence of antimicrobial resistance and pose harmful health effects. In response, a bifunctional and substrate-independent spray coating is presented herein. The bifunctional coating relies on wrinkled polydimethylsiloxane microparticles, decorated with biocidal gold nanoparticles to induce a "repel and kill" effect against pathogens. Pathogen repellency is provided by the structural hierarchy of the microparticles and their surface chemistry, whereas the kill mechanism is achieved using functionalized gold nanoparticles embedded on the microparticles. Bacterial tests with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa reveal a 99.9% reduction in bacterial load on spray-coated surfaces, while antiviral tests with Phi6─a bacterial virus often used as a surrogate to SARS-CoV-2─demonstrate a 98% reduction in virus load on coated surfaces. The newly developed spray coating is versatile, easily applicable to various surfaces, and effective against various pathogens, making it suitable for reducing surface contamination in frequently touched, heavy traffic, and high-risk surfaces.


Asunto(s)
Desinfectantes , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Oro/farmacología , Nanopartículas del Metal/química , Desinfectantes/farmacología , Bacterias , Antibacterianos/química
14.
Adv Sci (Weinh) ; 10(19): e2207223, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088731

RESUMEN

There is a need for point-of-care bacterial sensing and identification technologies that are rapid and simple to operate. Technologies that do not rely on growth cultures, nucleic acid amplification, step-wise reagent addition, and complex sample processing are the key for meeting this need. Herein, multiple materials technologies are integrated for overcoming the obstacles in creating rapid and one-pot bacterial sensing platforms. Liquid-infused nanoelectrodes are developed for reducing nonspecific binding on the transducer surface; bacterium-specific RNA-cleaving DNAzymes are used for bacterial identification; and redox DNA barcodes embedded into DNAzymes are used for binding-induced electrochemical signal transduction. The resultant single-step and one-pot assay demonstrates a limit-of-detection of 102 CFU mL-1 , with high specificity in identifying Escherichia coli amongst other Gram positive and negative bacteria including Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus subtilis. Additionally, this assay is evaluated for analyzing 31 clinically obtained urine samples, demonstrating a clinical sensitivity of 100% and specify of 100%. When challenging this assay with nine clinical blood cultures, E. coli-positive and E. coli-negative samples can be distinguished with a probability of p < 0.001.


Asunto(s)
ADN Catalítico , Escherichia coli , Escherichia coli/genética , Sensibilidad y Especificidad , Bacterias , ADN
15.
Anal Chem ; 84(2): 1012-8, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22124457

RESUMEN

The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica , Análisis por Matrices de Proteínas , Proteínas/química , Inmunoensayo , Microscopía Fluorescente , Espectroscopía de Fotoelectrones , Propiedades de Superficie
16.
Anal Chim Acta ; 1209: 339283, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35569863

RESUMEN

As a result of their favorable physical and chemical characteristics, thermoplastics have garnered significant interest in the area of microfluidics. The moldable nature of these inexpensive polymers enables easy fabrication, while their durability and chemical stability allow for resistance to high shear stress conditions and functionalization, respectively. This review provides a comprehensive examination several commonly used thermoplastic polymers in the microfluidics space including poly(methyl methacrylate) (PMMA), cyclic olefin polymer (COP) and copolymer (COC), polycarbonates (PC), poly(ethylene terephthalate) (PET), polystyrene (PS), poly(ethylene glycol) (PEG), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyester. We describe various biofunctionalization strategies applied within thermoplastic microfluidic platforms and their resultant applications. Lastly, emerging technologies with a focus on applying recently developed microfluidic and biofunctionalization strategies into thermoplastic systems are discussed.


Asunto(s)
Microfluídica , Polímeros , Plásticos , Tereftalatos Polietilenos , Polimetil Metacrilato , Poliestirenos
17.
Materials (Basel) ; 15(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36143790

RESUMEN

Various fields within biomedical engineering have been afforded rapid scientific advancement through the incorporation of microfluidics. As literature surrounding biological systems become more comprehensive and many microfluidic platforms show potential for commercialization, the development of representative fluidic systems has become more intricate. This has brought increased scrutiny of the material properties of microfluidic substrates. Thermoplastics have been highlighted as a promising material, given their material adaptability and commercial compatibility. This review provides a comprehensive discussion surrounding recent developments pertaining to thermoplastic microfluidic device fabrication. Existing and emerging approaches related to both microchannel fabrication and device assembly are highlighted, with consideration toward how specific approaches induce physical and/or chemical properties that are optimally suited for relevant real-world applications.

18.
ACS Appl Mater Interfaces ; 14(9): 11068-11077, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35225604

RESUMEN

Amidst the COVID-19 pandemic, it is evident that viral spread is mediated through several different transmission pathways. Reduction of these transmission pathways is urgently needed to control the spread of viruses between infected and susceptible individuals. Herein, we report the use of pathogen-repellent plastic wraps (RepelWrap) with engineered surface structures at multiple length scales (nanoscale to microscale) as a means of reducing the indirect contact transmission of viruses through fomites. To quantify viral repellency, we developed a touch-based viral quantification assay to mimic the interaction of a contaminated human touch with a surface through the modification of traditional viral quantification methods (viral plaque and TCID50 assays). These studies demonstrate that RepelWrap reduced contamination with an enveloped DNA virus as well as the human coronavirus 229E (HuCoV-229E) by more than 4 log 10 (>99.99%) compared to a standard commercially available polyethylene plastic wrap. In addition, RepelWrap maintained its repellent properties after repeated 300 touches and did not show an accumulation in viral titer after multiple contacts with contaminated surfaces, while increases were seen on other commonly used surfaces. These findings show the potential use of repellent surfaces in reducing viral contamination on surfaces, which could, in turn, reduce the surface-based spread and transmission.


Asunto(s)
COVID-19/prevención & control , Coronavirus Humano 229E/crecimiento & desarrollo , Contaminación de Equipos/prevención & control , Control de Infecciones/instrumentación , Plásticos/química , COVID-19/transmisión , COVID-19/virología , Humanos , Control de Infecciones/métodos , SARS-CoV-2/crecimiento & desarrollo , Propiedades de Superficie
19.
Sci Rep ; 12(1): 5380, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354896

RESUMEN

Titanium alloys, in particular, medical-grade Ti-6Al-4 V, are heavily used in orthopaedic applications due to their high moduli, strength, and biocompatibility. Implant infection can result in biofilm formation and failure of prosthesis. The formation of a biofilm on implants protects bacteria from antibiotics and the immune response, resulting in the propagation of the infection and ultimately resulting in device failure. Recently, slippery liquid-infused surfaces (LIS) have been investigated for their stable liquid interface, which provides excellent repellent properties to suppress biofilm formation. One of the current limitations of LIS coatings lies in the indistinctive repellency of bone cells in orthopaedic applications, resulting in poor tissue integration and bone ingrowth with the implant. Here, we report a chitosan impregnated LIS coating that facilitates cell adhesion while preventing biofilm formation. The fabricated coating displayed high contact angles (108.2 ± 5.2°) and low sliding angles (3.56 ± 4.3°). Elemental analysis obtained using X-ray photoelectron spectroscopy (XPS) confirmed the availability of fluorine and nitrogen, indicating the presence of fluorosilane and chitosan in the final coating. Furthermore, our results suggest that chitosan-conjugated LIS increased cell adhesion of osteoblast-like SaOS-2 cells and significantly promoted proliferation (a fourfold increase at 7-day incubation) compared to conventional titanium liquid-infused surfaces. Furthermore, the chitosan conjugated LIS significantly reduced biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) by up to 50% and 75% when compared to untreated titanium and chitosan-coated titanium, respectively. The engineered coating can be easily modified with other biopolymers or capture molecules to be applied to other biomaterials where tissue integration and biofilm prevention are needed.


Asunto(s)
Quitosano , Staphylococcus aureus Resistente a Meticilina , Bacterias , Biopelículas , Quitosano/farmacología , Oseointegración , Propiedades de Superficie , Titanio/química , Titanio/farmacología
20.
ACS Appl Mater Interfaces ; 14(3): 3864-3874, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35040309

RESUMEN

High-touch surfaces are known to be a major route for the spread of pathogens in healthcare and public settings. Antimicrobial coatings have, therefore, garnered significant attention to help mitigate the transmission of infectious diseases via the surface route. Among antimicrobial coatings, pathogen-repellent surfaces provide unique advantages in terms of safety in public settings such as instant repellency, affordability, biocompatibility, and long-term stability. While there have been many advances in the fabrication of biorepellent surfaces in the past two decades, this area of research continues to suffer challenges in scalability, cost, compatibility with high-touch applications, and performance for pathogen repellency. These features are critical for high-touch surfaces to be used in public settings. Additionally, the environmental impact of manufacturing repellent surfaces remains a challenge, mainly due to the use of fluorinated coatings. Here, we present a flexible hierarchical coating with straightforward and cost-effective manufacturing without the use of fluorine or a lubricant. Hierarchical surfaces were prepared through the growth of polysiloxane nanostructures using n-propyltrichlorosilane (n-PTCS) on activated polyolefin (PO), followed by heat shrinking to induce microscale wrinkles. The developed coatings demonstrated repellency, with contact angles over 153° and sliding angles <1°. In assays mimicking touch, these hierarchical surfaces demonstrated a 97.5% reduction in transmission of Escherichia coli (E.coli), demonstrating their potential as antimicrobial coatings to mitigate the spread of infectious diseases. Additionally, the developed surfaces displayed a 93% reduction in blood staining after incubation with human whole blood, confirming repellent properties that reduce bacterial deposition.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Escherichia coli/efectos de los fármacos , Siloxanos/farmacología , Antibacterianos/química , Materiales Biocompatibles/química , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Siloxanos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA