Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 38(24): 5413-5420, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36282863

RESUMEN

MOTIVATION: The 'glycoEnzymes' include a set of proteins having related enzymatic, metabolic, transport, structural and cofactor functions. Currently, there is no established ontology to describe glycoEnzyme properties and to relate them to glycan biosynthesis pathways. RESULTS: We present GlycoEnzOnto, an ontology describing 403 human glycoEnzymes curated along 139 glycosylation pathways, 134 molecular functions and 22 cellular compartments. The pathways described regulate nucleotide-sugar metabolism, glycosyl-substrate/donor transport, glycan biosynthesis and degradation. The role of each enzyme in the glycosylation initiation, elongation/branching and capping/termination phases is described. IUPAC linear strings present systematic human/machine-readable descriptions of individual reaction steps and enable automated knowledge-based curation of biochemical networks. All GlycoEnzOnto knowledge is integrated with the Gene Ontology biological processes. GlycoEnzOnto enables improved transcript overrepresentation analyses and glycosylation pathway identification compared to other available schema, e.g. KEGG and Reactome. Overall, GlycoEnzOnto represents a holistic glycoinformatics resource for systems-level analyses. AVAILABILITY AND IMPLEMENTATION: https://github.com/neel-lab/GlycoEnzOnto. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases del Conocimiento , Polisacáridos , Humanos , Ontología de Genes , Glicosilación
2.
Hum Mol Genet ; 27(R1): R40-R47, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29590361

RESUMEN

Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing 'big data', enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.


Asunto(s)
Macrodatos , Perfilación de la Expresión Génica/tendencias , Análisis de Secuencia de ARN/tendencias , Análisis de la Célula Individual/tendencias , Linaje de la Célula/genética , Humanos , Transcriptoma/genética
3.
BMC Bioinformatics ; 20(Suppl 5): 183, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31272374

RESUMEN

Cell cultures and cell lines are widely used in life science experiments. In conjunction with the 2018 International Conference on Biomedical Ontology (ICBO-2018), the 2nd International Workshop on Cells in ExperimentaL Life Science (CELLS-2018) focused on two themes of knowledge representation, for newly-discovered cell types and for cells in disease states. This workshop included five oral presentations and a general discussion session. Two new ontologies, including the Cancer Cell Ontology (CCL) and the Ontology for Stem Cell Investigations (OSCI), were reported in the workshop. In another representation, the Cell Line Ontology (CLO) framework was applied and extended to represent cell line cells used in China and their Chinese representation. Other presentations included a report on the application of ontologies to cross-compare cell types and marker patterns used in flow cytometry studies, and a presentation on new experimental findings about novel cell types based on single cell RNA sequencing assay and their corresponding ontological representation. The general discussion session focused on the ontology design patterns in representing newly-discovered cell types and cells in disease states.


Asunto(s)
Ontologías Biológicas , Disciplinas de las Ciencias Biológicas , Congresos como Asunto , Humanos , Investigación
4.
BMC Bioinformatics ; 20(Suppl 5): 181, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31272372

RESUMEN

BACKGROUND: Within the cancer domain, ontologies play an important role in the integration and annotation of data in order to support numerous biomedical tools and applications. This work seeks to leverage existing standards in immunophenotyping cell types found in hematologic malignancies to provide an ontological representation of them to aid in data annotation and analysis for patient data. RESULTS: We have developed the Cancer Cell Ontology according to OBO Foundry principles as an extension of the Cell Ontology. We define classes in Cancer Cell Ontology by using a genus-differentia approach using logical axioms capturing the expression of cellular surface markers in order to represent types of hematologic malignancies. By adopting conventions used in the Cell Ontology, we have created human and computer-readable definitions for 300 classes of blood cancers, based on the EGIL classification system for leukemias, and relying upon additional classification approaches for multiple myelomas and other hematologic malignancies. CONCLUSION: We have demonstrated a proof of concept for leveraging the built-in logical axioms of the ontology in order to classify patient surface marker data into appropriate diagnostic categories. We plan to integrate our ontology into existing tools for flow cytometry data analysis to facilitate the automated diagnosis of hematologic malignancies.


Asunto(s)
Ontologías Biológicas , Neoplasias Hematológicas/patología , Línea Celular Tumoral , Neoplasias Hematológicas/clasificación , Neoplasias Hematológicas/metabolismo , Humanos , Inmunofenotipificación , Aprendizaje Automático , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo
5.
BMC Bioinformatics ; 20(Suppl 5): 182, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31272390

RESUMEN

BACKGROUND: Human immunology studies often rely on the isolation and quantification of cell populations from an input sample based on flow cytometry and related techniques. Such techniques classify cells into populations based on the detection of a pattern of markers. The description of the cell populations targeted in such experiments typically have two complementary components: the description of the cell type targeted (e.g. 'T cells'), and the description of the marker pattern utilized (e.g. CD14-, CD3+). RESULTS: We here describe our attempts to use ontologies to cross-compare cell types and marker patterns (also referred to as gating definitions). We used a large set of such gating definitions and corresponding cell types submitted by different investigators into ImmPort, a central database for immunology studies, to examine the ability to parse gating definitions using terms from the Protein Ontology (PRO) and cell type descriptions, using the Cell Ontology (CL). We then used logical axioms from CL to detect discrepancies between the two. CONCLUSIONS: We suggest adoption of our proposed format for describing gating and cell type definitions to make comparisons easier. We also suggest a number of new terms to describe gating definitions in flow cytometry that are not based on molecular markers captured in PRO, but on forward- and side-scatter of light during data acquisition, which is more appropriate to capture in the Ontology for Biomedical Investigations (OBI). Finally, our approach results in suggestions on what logical axioms and new cell types could be considered for addition to the Cell Ontology.


Asunto(s)
Ontologías Biológicas , Bases de Datos Factuales , Humanos , Sistema Inmunológico/metabolismo , Subunidades de Proteína/metabolismo , Proteínas/metabolismo
6.
BMC Bioinformatics ; 20(Suppl 5): 180, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31272389

RESUMEN

BACKGROUND: Stem cells and stem cell lines are widely used in biomedical research. The Cell Ontology (CL) and Cell Line Ontology (CLO) are two community-based OBO Foundry ontologies in the domains of in vivo cells and in vitro cell line cells, respectively. RESULTS: To support standardized stem cell investigations, we have developed an Ontology for Stem Cell Investigations (OSCI). OSCI imports stem cell and cell line terms from CL and CLO, and investigation-related terms from existing ontologies. A novel focus of OSCI is its application in representing metadata types associated with various stem cell investigations. We also applied OSCI to systematically categorize experimental variables in an induced pluripotent stem cell line cell study related to bipolar disorder. In addition, we used a semi-automated literature mining approach to identify over 200 stem cell gene markers. The relations between these genes and stem cells are modeled and represented in OSCI. CONCLUSIONS: OSCI standardizes stem cells found in vivo and in vitro and in various stem cell investigation processes and entities. The presented use cases demonstrate the utility of OSCI in iPSC studies and literature mining related to bipolar disorder.


Asunto(s)
Ontologías Biológicas , Investigación Biomédica/normas , Animales , Humanos , Células Madre
7.
Nucleic Acids Res ; 45(D1): D339-D346, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899649

RESUMEN

The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Proteínas , Animales , Humanos , Proteínas/química , Proteínas/genética , Navegador Web
8.
BMC Bioinformatics ; 18(Suppl 17): 560, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29322916

RESUMEN

Cell cultures used in biomedical experiments come in the form of both sample biopsy primary cells, and maintainable immortalised cell lineages. The rise of bioinformatics and high-throughput technologies has led us to the requirement of ontology representation of cell types and cell lines. The Cell Ontology (CL) and Cell Line Ontology (CLO) have long been established as reference ontologies in the OBO framework. We have compiled a series of the challenges and the proposals of solutions in this CELLS (Cells in ExperimentaL Life Sciences) thematic series that cover the grounds of standing issues and the directions, which were discussed in the First International Workshop on CELLS at the the International Conference on Biomedical Ontology (ICBO). This workshop focused on the extension of the current CL and CLO to cover a wider set of biological questions and challenges needing semantic infrastructure for information modeling. We discussed data-driven use cases that leverage linkage of CL, CLO and other bio-ontologies. This is an established approach in data-driven ontologies such as the Experimental Factor Ontology (EFO), and the Ontology for Biomedical Investigation (OBI). The First International Workshop on CELLS at the International Conference on Biomedical Ontology has brought together experimental biologists and biomedical ontologists to discuss solutions to organizing and representing the rapidly evolving knowledge gained from experimental cells. The workshop has successfully identified the areas of challenge, and the gap in connecting the two domains of knowledge. The outcome of this workshop yielded practical implementation plans to filled in this gap.This CELLS workshop also provided a venue for panel discussions of innovative solutions as well as challenges in the development and applications of biomedical ontologies to represent and analyze experimental cell data.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional/métodos , Minería de Datos/métodos , Proyectos de Investigación , Humanos
9.
Bioinformatics ; 31(8): 1337-9, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25481008

RESUMEN

MOTIVATION: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources. RESULTS: We developed flowCL, a software package that performs semantic labelling of cell populations based on their surface markers and applied it to labelling of the Federation of Clinical Immunology Societies Human Immunology Project Consortium lyoplate populations as a use case. CONCLUSION: By providing automated labelling of cell populations based on their immunophenotype, flowCL allows for unambiguous and reproducible identification of standardized cell types. AVAILABILITY AND IMPLEMENTATION: Code, R script and documentation are available under the Artistic 2.0 license through Bioconductor (http://www.bioconductor.org/packages/devel/bioc/html/flowCL.html). CONTACT: rbrinkman@bccrc.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Fenómenos Fisiológicos Celulares , Citometría de Flujo/métodos , Ontología de Genes , Inmunofenotipificación/métodos , Programas Informáticos , Humanos , Antígenos Comunes de Leucocito/análisis , Receptores CCR7/análisis
10.
Nucleic Acids Res ; 42(Database issue): D415-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270789

RESUMEN

The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to UniProtKB in that PRO's organism-specific classes of proteins encoded by a specific gene correspond to entities documented in UniProtKB entries. PRO relates to the GO in that PRO's representations of organism-specific protein complexes are subclasses of the organism-agnostic protein complex terms in the GO Cellular Component Ontology. The past few years have seen growth and changes to the PRO, as well as new points of access to the data and new applications of PRO in immunology and proteomics. Here we describe some of these developments.


Asunto(s)
Ontologías Biológicas , Bases de Datos de Proteínas , Proteínas/clasificación , Animales , Humanos , Internet , Ratones , Proteínas/química
11.
Neuroinformatics ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763990

RESUMEN

Magnetic resonance imaging of the brain is a useful tool in both the clinic and research settings, aiding in the diagnosis and treatments of neurological disease and expanding our knowledge of the brain. However, there are many challenges inherent in managing and analyzing MRI data, due in large part to the heterogeneity of data acquisition. To address this, we have developed MRIO, the Magnetic Resonance Imaging Acquisition and Analysis Ontology. MRIO provides well-reasoned classes and logical axioms for the acquisition of several MRI acquisition types and well-known, peer-reviewed analysis software, facilitating the use of MRI data. These classes provide a common language for the neuroimaging research process and help standardize the organization and analysis of MRI data for reproducible datasets. We also provide queries for automated assignment of analyses for given MRI types. MRIO aids researchers in managing neuroimaging studies by helping organize and annotate MRI data and integrating with existing standards such as Digital Imaging and Communications in Medicine and the Brain Imaging Data Structure, enhancing reproducibility and interoperability. MRIO was constructed according to Open Biomedical Ontologies Foundry principles and has contributed several classes to the Ontology for Biomedical Investigations to help bridge neuroimaging data to other domains. MRIO addresses the need for a "common language" for MRI that can help manage the neuroimaging research, by enabling researchers to identify appropriate analyses for sets of scans and facilitating data organization and reporting.

12.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617362

RESUMEN

Many data resources generate, process, store, or provide kidney related molecular, pathological, and clinical data. Reference ontologies offer an opportunity to support knowledge and data integration. The Kidney Precision Medicine Project (KPMP) team contributed to the representation and addition of 329 kidney phenotype terms to the Human Phenotype Ontology (HPO), and identified many subcategories of acute kidney injury (AKI) or chronic kidney disease (CKD). The Kidney Tissue Atlas Ontology (KTAO) imports and integrates kidney-related terms from existing ontologies (e.g., HPO, CL, and Uberon) and represents 259 kidney-related biomarkers. We also developed a precision medicine metadata ontology (PMMO) to integrate 50 variables from KPMP and CZ CellxGene data resources and applied PMMO for integrative kidney data analysis. The gene expression profiles of kidney gene biomarkers were specifically analyzed under healthy control or AKI/CKD disease statuses. This work demonstrates how ontology-based approaches support multi-domain data and knowledge integration in precision medicine.

13.
BMC Bioinformatics ; 14: 263, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24004649

RESUMEN

BACKGROUND: New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an 'Ontologically BAsed Molecular Signature' (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type's identity. RESULTS: We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. CONCLUSIONS: This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis - providing a new method for defining novel biomarkers and providing an opportunity for new biological insights.


Asunto(s)
Células/clasificación , Células/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genómica/métodos , Biomarcadores/análisis , Biomarcadores/metabolismo , Células/citología , Simulación por Computador , Marcadores Genéticos/genética , Humanos
14.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609265

RESUMEN

Objective: Magnetic resonance imaging of the brain is a useful tool in both the clinic and research settings, aiding in the diagnosis and treatments of neurological disease and expanding our knowledge of the brain. However, there are many challenges inherent in managing and analyzing MRI data, due in large part to the heterogeneity of data acquisition. Materials and Methods: To address this, we have developed MRIO, the Magnetic Resonance Imaging Acquisition and Analysis Ontology. Results: MRIO provides well-reasoned classes and logical axioms for the acquisition of several MRI acquisition types and well-known, peer-reviewed analysis software, facilitating the use of MRI data. These classes provide a common language for the neuroimaging research process and help standardize the organization and analysis of MRI data for reproducible datasets. We also provide queries for automated assignment of analyses for given MRI types. Discussion: MRIO aids researchers in managing neuroimaging studies by helping organize and annotate MRI data and integrating with existing standards such as Digital Imaging and Communications in Medicine and the Brain Imaging Data Structure, enhancing reproducibility and interoperability. MRIO was constructed according to Open Biomedical Ontologies Foundry principals and has contributed several terms to the Ontology for Biomedical Investigations to help bridge neuroimaging data to other domains. Conclusion: MRIO addresses the need for a "common language" for MRI that can help manage the neuroimaging research, by enabling researchers to identify appropriate analyses for sets of scans and facilitating data organization and reporting.

15.
Hum Mol Genet ; 19(4): 707-19, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933168

RESUMEN

We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.


Asunto(s)
Variación Genética , Antígenos HLA/genética , Esclerodermia Sistémica/genética , Antígenos HLA/química , Antígenos HLA-DR/química , Antígenos HLA-DR/genética , Cadenas HLA-DRB1 , Humanos , Conformación Molecular
16.
BMC Bioinformatics ; 12: 325, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21819553

RESUMEN

BACKGROUND: Maintaining a bio-ontology in the long term requires improving and updating its contents so that it adequately captures what is known about biological phenomena. This paper illustrates how these processes are carried out, by studying the ways in which curators at the Gene Ontology have hitherto incorporated new knowledge into their resource. RESULTS: Five types of circumstances are singled out as warranting changes in the ontology: (1) the emergence of anomalies within GO; (2) the extension of the scope of GO; (3) divergence in how terminology is used across user communities; (4) new discoveries that change the meaning of the terms used and their relations to each other; and (5) the extension of the range of relations used to link entities or processes described by GO terms. CONCLUSION: This study illustrates the difficulties involved in applying general standards to the development of a specific ontology. Ontology curation aims to produce a faithful representation of knowledge domains as they keep developing, which requires the translation of general guidelines into specific representations of reality and an understanding of how scientific knowledge is produced and constantly updated. In this context, it is important that trained curators with technical expertise in the scientific field(s) in question are involved in supervising ontology shifts and identifying inaccuracies.


Asunto(s)
Genética , Bases del Conocimiento , Terminología como Asunto , Genes
17.
BMC Bioinformatics ; 12: 6, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21208450

RESUMEN

BACKGROUND: The Cell Ontology (CL) is an ontology for the representation of in vivo cell types. As biological ontologies such as the CL grow in complexity, they become increasingly difficult to use and maintain. By making the information in the ontology computable, we can use automated reasoners to detect errors and assist with classification. Here we report on the generation of computable definitions for the hematopoietic cell types in the CL. RESULTS: Computable definitions for over 340 CL classes have been created using a genus-differentia approach. These define cell types according to multiple axes of classification such as the protein complexes found on the surface of a cell type, the biological processes participated in by a cell type, or the phenotypic characteristics associated with a cell type. We employed automated reasoners to verify the ontology and to reveal mistakes in manual curation. The implementation of this process exposed areas in the ontology where new cell type classes were needed to accommodate species-specific expression of cellular markers. Our use of reasoners also inferred new relationships within the CL, and between the CL and the contributing ontologies. This restructured ontology can be used to identify immune cells by flow cytometry, supports sophisticated biological queries involving cells, and helps generate new hypotheses about cell function based on similarities to other cell types. CONCLUSION: Use of computable definitions enhances the development of the CL and supports the interoperability of OBO ontologies.


Asunto(s)
Células Sanguíneas/clasificación , Biología Computacional/métodos , Bases de Datos Factuales , Almacenamiento y Recuperación de la Información/métodos , Vocabulario Controlado
18.
J Biomed Inform ; 44(1): 75-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20123131

RESUMEN

The Cell Ontology (CL) aims for the representation of in vivo and in vitro cell types from all of biology. The CL is a candidate reference ontology of the OBO Foundry and requires extensive revision to bring it up to current standards for biomedical ontologies, both in its structure and its coverage of various subfields of biology. We have now addressed the specific content of one area of the CL, the section of the ontology dealing with hematopoietic cells. This section has been extensively revised to improve its content and eliminate multiple inheritance in the asserted hierarchy, and the groundwork has been laid for structuring the hematopoietic cell type terms as cross-products incorporating logical definitions built from relationships to external ontologies, such as the Protein Ontology and the Gene Ontology. The methods and improvements to the CL in this area represent a paradigm for improvement of the entire ontology over time.


Asunto(s)
Células Sanguíneas/citología , Hematopoyesis , Informática Médica , Vocabulario Controlado , Animales , Humanos
19.
Database (Oxford) ; 20212021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34697637

RESUMEN

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here, we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology's compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable, federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data Findable, Accessible, Interoperable, and Reusable (FAIR). Database URL http://obofoundry.org/.


Asunto(s)
Ontologías Biológicas , Bases de Datos Factuales , Metadatos
20.
CEUR Workshop Proc ; 2807: K1-K10, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34707469

RESUMEN

The objective of this paper is to propose formal definitions for the terms 'protein aggregate' and 'protein-containing complex' such that the descriptions and usages of these terms in biomedical literature are unified and that those portions of reality are correctly represented. To this end, we surveyed the literature to assess the need for a distinction between these entities, then compared the features of usages and definitions found in the literature to the definitions for those terms found in Bioportal ontologies. Based on the results of this comparison, we propose updated definitions for the terms 'protein aggregate' and 'protein-containing complex'. Thus far, we propose the following distinguishing factors: first, that one important difference lies in whether an entity is disposed to change type in response to certain structural alterations, such as dissociation of a continuant part, and second that an important difference lies in the ability of the entity to realize its function after such an event occurs. These distinctions are reflected in the proposed definitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA