Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Small ; : e2401610, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856970

RESUMEN

Herein, the design of novel and safe electrolyte formulations for high-voltage Ni-rich cathodes is reported. The solvent mixture comprising 1,1,2,2-tetraethoxyethane and propylene carbonate not only displays good transport properties, but also greatly enhances the overall safety of the cell thanks to its low flammability. The influence of the conducting salts, that is, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI), and of the additives lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato)borate (LiDFOB) is examined. Molecular dynamics simulations are carried out to gain insights into the local structure of the different electrolytes and the lithium-ion coordination. Furthermore, special emphasis is placed on the film-forming abilities of the salts to suppress the anodic dissolution of the aluminum  current collector and to create a stable cathode electrolyte interphase (CEI). In this regard, the borate-based additives significantly alleviate the intrinsic challenges associated with the use of LiTFSI and LiFSI salts. It is worth remarking that a superior cathode performance is achieved by using the LiFSI/LiDFOB electrolyte, displaying a high specific capacity of 164 mAh g-1 at 6 C and ca. 95% capacity retention after 100 cycles at 1 C. This is attributed to the rich chemistry of the generated CEI layer, as confirmed by ex situ X-ray photoelectron spectroscopy.

2.
Angew Chem Int Ed Engl ; 63(10): e202318204, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38244210

RESUMEN

Aluminum-sulfur (Al-S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al-S batteries, especially at sub-zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non-solvating 1,2-difluorobenzene (dFBn) co-solvent are proposed for wide-temperature-range Al-S batteries. The addition of dFBn effectively promotes the fluidity and ionic conductivity without affecting the AlCl4 - /Al2 Cl7 - equilibrium, which preserves the reversible stripping/plating of aluminum and further promotes the overall kinetics of Al-S batteries. As a result, Al-S cells employing the LCILE exhibit higher specific capacity, better cyclability, and lower polarization with respect to the neat ILE in a wide temperature range from -20 to 40 °C. For instance, Al-S batteries employing the LCILE sustain a remarkable capacity of 507 mAh g-1 after 300 cycles at 20 °C, while only 229 mAh g-1 is delivered with the dFBn-free electrolyte under the same condition. This work demonstrates the favorable use of LCILEs for wide-temperature Al-S batteries.

3.
Angew Chem Int Ed Engl ; 63(7): e202315371, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38014650

RESUMEN

The high-entropy approach is applied to monoclinic Prussian White (PW) Na-ion cathodes to address the issue of unfavorable multilevel phase transitions upon electrochemical cycling, leading to poor stability and capacity decay. A series of Mn-based samples with up to six metal species sharing the N-coordinated positions was synthesized. The material of composition Na1.65 Mn0.4 Fe0.12 Ni0.12 Cu0.12 Co0.12 Cd0.12 [Fe(CN)6 ]0.92 □0.08 ⋅ 1.09H2 O was found to exhibit superior cyclability over medium/low-entropy and conventional single-metal PWs. We also report, to our knowledge for the first time, that a high-symmetry crystal structure may be advantageous for high-entropy PWs during battery operation. Computational comparisons of the formation enthalpy demonstrate that the compositionally less complex materials are prone to phase transitions, which negatively affect cycling performance. Based on data from complementary characterization techniques, an intrinsic mechanism for the stability improvement of the disordered PW structure upon Na+ insertion/extraction is proposed, namely the dual effect of suppression of phase transitions and mitigation of gas evolution.

4.
Angew Chem Int Ed Engl ; 62(31): e202305840, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249166

RESUMEN

Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at -20 °C and 0.5 mA cm-2 , with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm-2 ) and high-loading LiNi0.8 Co0.15 Al0.05 O2 cathodes (10 mg cm-2 ) retain 70 % of the initial capacity after 100 cycles at -20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.

5.
Angew Chem Int Ed Engl ; 62(2): e202212339, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36269169

RESUMEN

Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4 ] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg-1 and a high-energy density of ∼∼300 Wh kg-1 , respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca-Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.

6.
Small ; 18(42): e2203874, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36116115

RESUMEN

Lithium batteries occupy the large-scale electric mobility market raising concerns about the environmental impact of cell production, especially regarding the use of poly(vinylidene difluoride) (teratogenic) and N-methyl-2-pyrrolidone (NMP, harmful). To avoid their use, an aqueous electrode processing route is utilized in which a water-soluble hybrid acrylic-fluoropolymer together with sodium carboxymethyl cellulose is used as binder, and a thin phosphate coating layer is in situ formed on the surface of the nickel-rich cathode during electrode processing. The resulting electrodes achieve a comparable performance to that of NMP-based electrodes in conventional organic carbonate-based electrolyte (LP30). Subsequently, an ionic liquid electrolyte (ILE) is employed to replace the organic electrolyte, building stable electrode/electrolyte interphases on the surface of the nickel-rich positive electrode (cathode) and metallic lithium negative electrode (anode). In such ILE, the aqueously processed electrodes achieve high cycling stability with a capacity retention of 91% after 1000 cycles (20 °C). In addition, a high capacity of more than 2.5 mAh cm-2 is achieved for high loading electrodes (≈15 mg cm-2 ) by using a modified ILE with 5% vinylene carbonate additive. A path to achieve environmentally friendly electrode manufacturing while maintaining their outstanding performance and structural integrity is demonstrated.

7.
Chemphyschem ; 22(6): 542-552, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33411392

RESUMEN

The oxidation of CO on planar Au/TiO2 model catalysts was investigated under pressure and temperature conditions similar to those for experiments with more realistic Au/TiO2 powder catalysts. The effects of a change of temperature, pressure, and gold coverage on the CO oxidation activity were studied. Additionally, the reasons for the deactivation of the catalysts were examined in long-term experiments. From kinetic measurements, the activation energy and the reaction order for the CO oxidation reaction were derived and a close correspondence with results of powder catalysts was found, although the overall turnover frequency (TOF) measured in our experiments was around one order of magnitude lower compared to results of powder catalysts under similar conditions. Furthermore, long-term experiments at 80 °C showed a decrease of the activity of the model catalysts after some hours. Simultaneous in-situ IR experiments revealed a decrease of the signal intensity of the CO vibration band, while the tendency for the build-up of side products (e. g. carbonates, carboxylates) of the CO oxidation reaction on the surface of the planar model catalysts was rather low.

8.
Small ; 16(39): e2001806, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32812367

RESUMEN

Rechargeable metal-sulfur batteries show great promise for energy storage applications because of their potentially high energy and low cost. The multivalent-metal based electrochemical system exhibits the particular advantage of the feasibility of dendrite-free metal anode. Calcium (Ca) represents a promising anode material owing to the low reductive potential, high capacity, and abundant natural resources. However, calcium-sulfur (Ca-S) battery technology is in an early R&D stage, facing the fundamental challenge to develop a suitable electrolyte enabling reversible electrochemical Ca deposition, and at the same time, sulfur redox reactions in the system. Herein, a study of a room-temperature Ca-S battery by employing a stable and efficient calcium tetrakis(hexafluoroisopropyloxy) borate Ca[B(hfip)4 ]2 electrolyte is presented. The Ca-S batteries exhibit a cell voltage of ≈2.1 V (close to its thermodynamic value) and good reversibility. The mechanistic studies hint at a redox chemistry of sulfur with polysulfide/sulfide species involved in the Ca-based system.

9.
Sensors (Basel) ; 20(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731347

RESUMEN

The development of sensitive biosensors, such as gallium nitride (GaN)-based quantum wells, transistors, etc., often makes it necessary to functionalize GaN surfaces with small molecules or even biomolecules, such as proteins. As a first step in surface functionalization, we have investigated silane adsorption, as well as the formation of very thin silane layers. In the next step, the immobilization of the tetrameric protein streptavidin (as well as the attachment of chemically modified iron transport protein ferritin (ferritin-biotin-rhodamine complex)) was realized on these films. The degree of functionalization of the GaN surfaces was determined by fluorescence measurements with fluorescent-labeled proteins; silane film thickness and surface roughness were estimated, and also other surface sensitive techniques were applied. The formation of a monolayer consisting of adsorbed organosilanes was accomplished on Mg-doped GaN surfaces, and also functionalization with proteins was achieved. We found that very high Mg doping reduced the amount of surface functionalized proteins. Most likely, this finding was a consequence of the lower concentration of ionizable Mg atoms in highly Mg-doped layers as a consequence of self-compensation effects. In summary, we could demonstrate the necessity of Mg doping for achieving reasonable bio-functionalization of GaN surfaces.

10.
Angew Chem Int Ed Engl ; 56(35): 10341-10346, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28627132

RESUMEN

The novel functionalized porphyrin [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy-storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy-storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge-discharge rates up to 53 C and a specific energy density of 345 Wh kg-1 at a specific power density of 29 kW kg-1 . Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg-1 . Whereas the capacity is in the range of that of ordinary lithium-ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability.

11.
Angew Chem Int Ed Engl ; 55(13): 4285-90, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26924132

RESUMEN

A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) . A reversible capacity of 113 mAh g(-1) was retained even after 100 cycles when cycled at a high current density of 522 mA g(-1) . Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation-intercalation of chloride ions in the VOCl electrode.

12.
Chemphyschem ; 16(14): 2943-52, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26272080

RESUMEN

The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X-ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub-monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600-650 K, which is evidenced by core-level shifts (CLSs) of the Ag(3d5/2 ) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad -related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.

13.
Adv Mater ; 36(24): e2400263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412289

RESUMEN

Low-cost and nontoxic deep eutectic liquid electrolytes (DELEs), such as [AlCl3]1.3[Urea] (AU), are promising for rechargeable non-aqueous aluminum metal batteries (AMBs). However, their high viscosity and sluggish ion transport at room temperature lead to high cell polarization and low specific capacity, limiting their practical application. Herein, non-solvating 1,2-difluorobenzene (dFBn) is proposed as a co-solvent of DELEs using AU as model to construct a locally concentrated deep eutectic liquid electrolyte (LC-DELE). dFBn effectively improves the fluidity and ion transport without affecting the ionic dynamics in the electrolyte. Moreover, dFBn also modifies the solid electrolyte interphase growing on the aluminum metal anodes and reduces the interfacial resistance. As a result, the lifespan of Al/Al cells is improved from 210 to 2000 h, and the cell polarization is reduced from 0.36 to 0.14 V at 1.0 mA cm-2. The rate performance of Al-graphite cells is greatly improved with a polarization reduction of 0.15 and 0.74 V at 0.1 and 1 A g-1, respectively. The initial discharge capacity of Al-sulfur cells is improved from 94 to 1640 mAh g-1. This work provides a feasible solution to the high polarization of AMBs employing DELEs and a new path to high-performance low-cost AMBs.

14.
Adv Mater ; 36(1): e2309062, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956687

RESUMEN

Lithium metal batteries (LMBs) with nickel-rich cathodes are promising candidates for next-generation high-energy-density batteries, but the lack of sufficiently protective electrode/electrolyte interphases (EEIs) limits their cyclability. Herein, trifluoromethoxybenzene is proposed as a cosolvent for locally concentrated ionic liquid electrolytes (LCILEs) to reinforce the EEIs. With a comparative study of a neat ionic liquid electrolyte (ILE) and three LCILEs employing fluorobenzene, trifluoromethylbenzene, or trifluoromethoxybenzene as cosolvents, it is revealed that the fluorinated groups tethered to the benzene ring of the cosolvents not only affect the electrolytes' ionic conductivity and fluidity, but also the EEIs' composition via adjusting the contribution of the 1-ethyl-3-methylimidazolium cation (Emim+ ) and bis(fluorosulfonyl)imide anion. Trifluoromethoxybenzene, as the optimal cosolvent, leads to a stable cycling of LMBs employing 5 mAh cm-2 lithium metal anodes (LMAs), 21 mg cm-2 LiNi0.8 Co0.15 Al0.05 (NCA) cathodes, and 4.2 µL mAh-1 electrolytes for 150 cycles with a remarkable capacity retention of 71%, thanks to a solid electrolyte interphase rich in inorganic species on LMAs and, particularly, a uniform cathode/electrolyte interphase rich in Emim+ -derived species on NCA cathodes. By contrast, the capacity retention under the same condition is only 16%, 46%, and 18% for the neat ILE and the LCILEs based on fluorobenzene and benzotrifluoride, respectively.

15.
ACS Appl Mater Interfaces ; 16(20): 25953-25965, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716923

RESUMEN

Layered oxides constitute one of the most promising cathode materials classes for large-scale sodium-ion batteries because of their high specific capacity, scalable synthesis, and low cost. However, their practical use is limited by their low energy density, physicochemical instability, and poor cycling stability. Aiming to mitigate these shortcomings, in this work, we synthesized polycrystalline (PC) and single-crystal (SC) P2-type Na0.67-δMn0.67Ni0.33O2 (NMNO) cathode materials through a solid-state route and evaluated their physicochemical and electrochemical performance. The SC-NMNO cathode with a large mean primary particle size (D50) of 12.7 µm was found to exhibit high cycling stability leading to 47% higher capacity retention than PC-NMNO after 175 cycles at 1C rate in the potential window 4.2-1.5 V. This could be attributed to the effective mitigation of parasitic side reactions at the electrode-electrolyte interface and suppressed intergranular cracking induced by anisotropic volume changes. This is confirmed by the lower volume variation of SC-NMNO (ΔV ∼ 1.0%) compared to PC-NMNO (ΔV ∼ 1.4%) upon charging to 4.2 V. Additionally, the SC-NMNO cathode displayed slightly higher thermal stability compared to PC-NMNO. Both cathodes exhibited good chemical stability against air and water exposure, thus enabling material storage/handling in the ambient atmosphere as well as making them suitable for aqueous processing. In this regard, PC-NMNO was investigated with two low-cost aqueous binders, carboxymethyl cellulose, and sodium trimetaphosphate, which exhibited higher binding strength and displayed excellent electrochemical performance compared to PVDF, which could potentially lead to significant cost reduction in electrode manufacturing.

16.
ACS Nano ; 18(35): 24441-24457, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39172962

RESUMEN

The synergistic engineering of chemical complexity and crystal structures has been applied to Prussian blue analogue (PBA) cathodes in this work. More precisely, the high-entropy concept has been successfully introduced into two structure types of identical composition, namely, cubic and monoclinic. Through the utilization of a variety of complementary characterization techniques, a comprehensive investigation into the electrochemical behavior of the cubic and monoclinic PBAs has been conducted, providing nuanced insights. The implementation of the high-entropy concept exhibits crucial selectivity toward the intrinsic crystal structure. Specifically, while the overall cycling stability of both cathode systems is significantly improved, the synergistic interplay of crystal structure engineering and entropy proves particularly significant. After optimization, the cubic PBA demonstrates structural advantages, showcasing good reversibility, minimal capacity loss, high thermal stability, and unparalleled endurance even under harsh conditions (high specific current and temperature).

17.
Chemphyschem ; 14(16): 3801-5, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24039117

RESUMEN

We demonstrate that the (local) adsorbed carbon monoxide, COad , coverage on the Pt-free areas of bimetallic Pt/Ru(0001) surfaces (a Ru(0001) substrate partly covered by Pt monolayer islands) can be increased to ∼0.80 monolayers (ML), well above the established saturation COad coverage of 0.68 ML, even under ultrahigh vacuum conditions by using spill-over of CO adsorbed on the Pt islands to the Ru areas as an highly effective adsorption channel. The apparent COad saturation coverage of 0.68 ML on pure Ru(0001) is identified as due to kinetic limitations, hindering further uptake from the gas phase, rather than being caused by thermodynamic reasons. This spill-over mechanism is proposed to be a general phenomenon for adsorption on bimetallic surfaces.

18.
ACS Appl Mater Interfaces ; 15(21): 25462-25472, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204404

RESUMEN

Rechargeable lithium-metal batteries (LMBs) are anticipated to enable enhanced energy densities, which can be maximized when minimizing the amount of excess lithium in the cell down to zero, also referred to as "zero excess" LMBs. In this case, the only source of lithium is the positive electrode active material─just like in lithium-ion batteries. However, this requires the fully reversible deposition of metallic lithium, i.e., the Coulombic efficiency (CE) approaching 100%. Herein, the lithium plating from ionic liquid-based electrolytes, composed of N-butyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the conducting salt, on nickel current collectors is investigated via a comprehensive set of electrochemical techniques coupled with operando and in situ atomic force microscopy and ex situ X-ray photoelectron spectroscopy. The investigation involves the use of fluoroethylene carbonate (FEC) as an electrolyte additive. The results show that an elevated LiTFSI concentration leads to a lower overpotential for the lithium nucleation and a more homogeneous deposition. The incorporation of FEC results in a further lowered overpotential and a stabilized solid electrolyte interphase, enabling a substantially enhanced CE.

19.
ChemSusChem ; 16(3): e202202090, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36445802

RESUMEN

Porphyrin derivatives represent an emerging class of redox-active materials for sustainable electrochemical energy storage. However, their structure-performance relationship is poorly understood, which confines their rational design and thus limits access to their full potential. To gain such understanding, we here focus on the role of the metal ion within porphyrin molecules. The A2 B2 -type porphyrin 5,15-bis(ethynyl)-10,20-diphenylporphyrin and its first-row transition metal complexes from Co to Zn are used as models to investigate the relationships between structure and electrochemical performance. It turned out that the choice of central metal atom has a profound influence on the practical voltage window and discharge capacity. The results of DFT calculations suggest that the choice of central metal atom triggers the degree of planarity of the porphyrin. Single crystal diffraction studies illustrate the consequences on the intramolecular rearrangement and packing of metalloporphyrins. Besides the direct effect of the metal choice on the undesired solubility, efficient packing and crystallinity are found to dictate the rate capability and the ion diffusion along with the porosity. Such findings open up a vast space of compositions and morphologies to accelerate the practical application of resource-friendly cathode materials to satisfy the rapidly increasing need for efficient electrical energy storage.

20.
ACS Nano ; 17(14): 14043-14052, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37395671

RESUMEN

The production of renewable feedstocks through the coupled oxygen evolution reaction (OER) with selective organic oxidation requires a perfect balance in the choice of a catalyst and its synthesis access, morphology, and catalytic activity. Herein we report a rapid in-liquid plasma approach to produce a hierarchical amorphous birnessite-type manganese oxide layer on 3D nickel foam. The as-prepared anode exhibits an OER activity with overpotentials of 220, 250, and 270 mV for 100, 500, and 1000 mA·cm-2, respectively, and can spontaneously be paired with chemoselective dehydrogenation of benzylamine under both ambient and industrial (6 M KOH, 65 °C) alkaline conditions. The in-depth ex-situ and in-situ characterization unequivocally demonstrate the intercalation of potassium in the birnessite-type phase with prevalent MnIII states as an active structure, which displays a trade-off between porous morphology and bulk volume catalytic activity. Further, a structure-activity relationship is realized based on the cation size and structurally similar manganese oxide polymorphs. The presented method is a substantial step forward in developing a robust MnOx catalyst for combining effective industrial OER and value-added organic oxidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA