Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38439668

RESUMEN

AIMS: Enterocins K1 and EJ97 have specific antimicrobial activity against Enterococcus faecium and Enterococcus faecalis, respectively. The aim of this study was to investigate the utility of these enterocins for in vivo treatment of systemic enterococcal infections. METHODS AND RESULTS: The antimicrobial effect in blood was analysed and compared against the effect in saline. Colony forming unit counts revealed that the enterocins killed all the bacteria within 1 hour. Additionally, the bactericidal effect against E. faecalis was more rapid in blood, indicating a possible synergy between EntEJ97 and blood. Importantly, no enterocin resistant mutants emerged in these experiments. Injecting the enterocins intraperitoneally in an in vivo mouse model and using fluorescence and minimum inhibitory concentration determination to estimate concentrations of the peptides in plasma, indicate that the enterocins exist in circulation in therapeutic concentrations. Alanine aminotransferase detection, and haemolysis analysis indicates that there is no detectable liver damage or haemolytic effect after injection. CONCLUSIONS: The study revealed that EntK1 and EntEJ97 are able to kill all bacteria ex vivo in the presence of blood. In vivo experiments determine that the enterocins exist in circulation in therapeutic concentrations without causing liver damage or haemolysis. Future experiments should test these peptides for treatment of infection in a relevant in vivo model.


Asunto(s)
Infecciones Bacterianas , Bacteriocinas , Enterococcus faecium , Enterococos Resistentes a la Vancomicina , Animales , Ratones , Bacteriocinas/farmacología , Hemólisis , Estudios de Factibilidad , Antibacterianos/farmacología , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana
2.
J Biol Chem ; 298(11): 102593, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244452

RESUMEN

Enterocin K1 (EntK1), a bacteriocin that is highly potent against vancomycin-resistant enterococci, depends on binding to an intramembrane protease of the site-2 protease family, RseP, for its antimicrobial activity. RseP is highly conserved in both EntK1-sensitive and EntK1-insensitive bacteria, and the molecular mechanisms underlying the interaction between RseP and EntK1 and bacteriocin sensitivity are unknown. Here, we describe a mutational study of RseP from EntK1-sensitive Enterococcus faecium to identify regions of RseP involved in bacteriocin binding and activity. Mutational effects were assessed by studying EntK1 sensitivity and binding with strains of naturally EntK1-insensitive Lactiplantibacillus plantarum-expressing various RseP variants. We determined that site-directed mutations in conserved sequence motifs related to catalysis and substrate binding, and even deletion of two such motifs known to be involved in substrate binding, did not abolish bacteriocin sensitivity, with one exception. A mutation of a highly conserved asparagine, Asn359, in the extended so-called LDG motif abolished both binding of and killing by EntK1. By constructing various hybrids of the RseP proteins from sensitive E. faecium and insensitive L. plantarum, we showed that the extracellular PDZ domain is the key determinant of EntK1 sensitivity. Taken together, these data may provide valuable insight for guided construction of novel bacteriocins and may contribute to establishing RseP as an antibacterial target.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Proteínas de Escherichia coli , Bacteriocinas/genética , Bacteriocinas/farmacología , Proteínas de Escherichia coli/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Enterococcus faecium/metabolismo , Metaloproteasas
3.
BMC Genomics ; 24(1): 295, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259063

RESUMEN

BACKGROUND: Our knowledge about the ecological role of bacterial antimicrobial peptides (bacteriocins) in the human gut is limited, particularly in relation to their role in the diversification of the gut microbiota during early life. The aim of this paper was therefore to address associations between bacteriocins and bacterial diversity in the human gut microbiota. To investigate this, we did an extensive screening of 2564 healthy human gut metagenomes for the presence of predicted bacteriocin-encoding genes, comparing bacteriocin gene presence to strain diversity and age. RESULTS: We found that the abundance of bacteriocin genes was significantly higher in infant-like metagenomes (< 2 years) compared to adult-like metagenomes (2-107 years). By comparing infant-like metagenomes with and without a given bacteriocin, we found that bacteriocin presence was associated with increased strain diversities. CONCLUSIONS: Our findings indicate that bacteriocins may play a role in the strain diversification during the infant gut microbiota establishment.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Minería de Datos , Microbioma Gastrointestinal/efectos de los fármacos , Bacteriocinas/farmacología , Genoma
4.
Int Wound J ; 20(1): 120-130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35633295

RESUMEN

The study aimed to evaluate the antibacterial efficacy of Lugol's solution 5% and Gentian violet 1% against methicillin-resistant Staphylococcus aureus (MRSA) biofilm in vivo. The bactericidal efficacy for treatment of MRSA-biofilm skin wound infection was tested in a murine model. Luciferase-tagged S. aureus Xen31, a MRSA-strain derived from S. aureus ATCC-3359130, was used for infection. Wounds were made in the skin of mice and infected with MRSA. The mice were treated with Lugol's solution and Gentian violet. Application of the antimicrobial agents started 24 hours post infection and was repeated daily for five-days. The antimicrobial effect on the biofilm bacteria was evaluated by measuring bioluminescence from MRSA daily for seven-days. Lugol's solution and Gentian violet showed a significant reduction in luminescent signals from the first assessment day to all subsequent days (P < .001). Lugol's solution and Gentian violet effectively eradicated MRSA in biofilm in vivo and could be alternatives or in addition to topical antibiotics when MRSA-biofilm wound infection is suspected.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enfermedades Cutáneas Infecciosas , Traumatismos de los Tejidos Blandos , Infección de Heridas , Animales , Ratones , Violeta de Genciana/uso terapéutico , Staphylococcus aureus , Antibacterianos/uso terapéutico , Infección de Heridas/tratamiento farmacológico , Traumatismos de los Tejidos Blandos/tratamiento farmacológico , Biopelículas
5.
Microb Cell Fact ; 21(1): 11, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033086

RESUMEN

BACKGROUND: The bacteriocin nisin is naturally produced by Lactococcus lactis as an inactive prepeptide that is modified posttranslationally resulting in five (methyl-)lanthionine rings characteristic for class Ia bacteriocins. Export and proteolytic cleavage of the leader peptide results in release of active nisin. By targeting the universal peptidoglycan precursor lipid II, nisin has a broad target spectrum including important human pathogens such as Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains. Industrial nisin production is currently performed using natural producer strains resulting in rather low product purity and limiting its application to preservation of dairy food products. RESULTS: We established heterologous nisin production using the biotechnological workhorse organism Corynebacterium glutamicum in a two-step process. We demonstrate successful biosynthesis and export of fully modified prenisin and its activation to mature nisin by a purified, soluble variant of the nisin protease NisP (sNisP) produced in Escherichia coli. Active nisin was detected by a L. lactis sensor strain with strictly nisin-dependent expression of the fluorescent protein mCherry. Following activation by sNisP, supernatants of the recombinant C. glutamicum producer strain cultivated in standard batch fermentations contained at least 1.25 mg/l active nisin. CONCLUSIONS: We demonstrate successful implementation of a two-step process for recombinant production of active nisin with C. glutamicum. This extends the spectrum of bioactive compounds that may be produced using C. glutamicum to a bacteriocin harboring complex posttranslational modifications. Our results provide a basis for further studies to optimize product yields, transfer production to sustainable substrates and purification of pharmaceutical grade nisin.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Nisina/biosíntesis , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Nisina/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo
6.
Microb Cell Fact ; 21(1): 236, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368990

RESUMEN

Bacteriocins are ribosomally synthesized antimicrobial peptides, that either kill target bacteria or inhibit their growth. Bacteriocins are used in food preservation and are of increasing interest as potential alternatives to conventional antibiotics. In the present study, we show that Lactococcus petauri B1726, a strain isolated from fermented balsam pear, produces a heat-stable and protease-sensitive compound. Following genome sequencing, a gene cluster for production of a class IId bacteriocin was identified consisting of garQ (encoding for the bacteriocin garvicin Q), garI (for a putative immunity protein), garC, and garD (putative transporter proteins). Growth conditions were optimized for increased bacteriocin activity in supernatants of L. petauri B1726 and purification and mass spectrometry identified the compound as garvicin Q. Further experiments suggest that garvicin Q adsorbs to biomass of various susceptible and insusceptible bacteria and support the hypothesis that garvicin Q requires a mannose-family phosphotransferase system (PTSMan) as receptor to kill target bacteria by disruption of membrane integrity. Heterologous expression of a synthetic garQICD operon was established in Corynebacterium glutamicum demonstrating that genes garQICD are responsible for biosynthesis and secretion of garvicin Q. Moreover, production of garvicin Q by the recombinant C. glutamicum strain was improved by using a defined medium yet product levels were still considerably lower than with the natural L. petauri B1726 producer strain.Collectively, our data identifies the genetic basis for production of the bacteriocin garvicin Q by L. petauri B1726 and provides insights into the receptor and mode of action of garvicin Q. Moreover, we successfully performed first attempts towards biotechnological production of this interesting bacteriocin using natural and heterologous hosts.


Asunto(s)
Bacteriocinas , Humanos , Bacteriocinas/farmacología , Antibacterianos/farmacología , Operón , Bacterias/metabolismo
7.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269976

RESUMEN

Bacteriocins are emerging as a viable alternative to antibiotics due to their ability to inhibit growth or kill antibiotic resistant pathogens. Herein, we evaluated the ability of the bacteriocin Garvicin KS (GarKS) produced by Lactococcus garvieae KS1546 isolated from cow milk to inhibit the growth of fish and foodborne bacterial pathogens. We found that GarKS inhibited the growth of five fish L. garvieae strains isolated from infected trout and eels. Among fish pathogens, GarKS inhibited the growth of Streptococcus agalactiae serotypes Ia and Ib, and Aeromonas hydrophila but did not inhibit the growth of Edwardsiella tarda. In addition, it inhibited the growth of A. salmonicida strain 6421 but not A. salmonicida strain 6422 and Yersinia ruckeri. There was no inhibition of three foodborne bacterial species, namely Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli. In vitro cytotoxicity tests using different GarKS concentrations showed that the highest concentration of 33 µg/mL exhibited low cytotoxicity, while concentrations ≤3.3 µg/mL had no cytotoxicity on CHSE-214 and RTG-2 cells. In vivo tests showed that zebrafish larvae treated with 33 µg/mL and 3.3 µg/mL GarKS prior to challenge had 53% and 48% survival, respectively, while concentrations ≤0.33 µg/mL were nonprotective. Altogether, these data show that GarKS has a broad inhibitory spectrum against Gram positive and negative bacteria and that it has potential applications as a therapeutic agent for a wide range of bacterial pathogens. Thus, future studies should include clinical trials to test the efficacy of GarKS against various bacterial pathogens in farmed fish.


Asunto(s)
Bacteriocinas , Enfermedades de los Peces , Yersiniosis , Animales , Antibacterianos/farmacología , Bacteriocinas/farmacología , Bovinos , Femenino , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Lactococcus , Larva , Pez Cebra
8.
Antimicrob Agents Chemother ; 65(12): e0092121, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34516250

RESUMEN

Resistance to nonribosomally synthesized peptide antibiotics affecting the cell envelope is well studied and mostly associated with the action of peptide-sensing and detoxification (PSD) modules, which consist of a two-component system (TCS) and an ATP-binding cassette (ABC) transporter. In contrast, the mechanisms of resistance to ribosomally synthesized bacterial toxic peptides (bacteriocins), which also affect the cell envelope, are studied to a lesser extent, and the possible cross-resistance between them and antibiotics is still poorly understood. In the present study, we investigated the development of resistance of Lactococcus lactis to aureocin A53- and enterocin L50-like bacteriocins and cross-resistance with antibiotics. First, 19 spontaneous mutants resistant to their representatives were selected and also displayed changes in sensitivity to peptide antibiotics acting on the cell envelope (bacitracin, daptomycin, and gramicidin). Sequencing of their genomes revealed mutations in genes encoding the ABC transporter YsaCB and the TCS KinG-LlrG, the emergence of which induced the upregulation of the dltABCD and ysaDCB operons. The ysaB mutations were either nonsense or frameshift mutations and led to the generation of truncated YsaB but with the conserved N-terminal FtsX domain intact. Deletions of ysaCB or llrG had a minor effect on the resistance of the obtained mutants to the tested bacteriocins, daptomycin, and gramicidin, indicating that the development of resistance is dependent on the modification of the protein rather than its absence. In further corroboration of the above-mentioned conclusion, we show that the FtsX domain, which functions effectively when YsaB is lacking its central and C-terminal parts, is critical for resistance to these antimicrobials.


Asunto(s)
Bacteriocinas , Farmacorresistencia Bacteriana/genética , Lactococcus lactis , Antibacterianos/farmacología , Bacteriocinas/genética , Bacteriocinas/farmacología , Hidrocarburos Aromáticos con Puentes , Lactococcus lactis/efectos de los fármacos , Lactococcus lactis/genética , Péptidos/farmacología
9.
Metab Eng ; 68: 34-45, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492380

RESUMEN

Bacteriocins are antimicrobial peptides produced by bacteria to inhibit competitors in their natural environments. Some of these peptides have emerged as commercial food preservatives and, due to the rapid increase in antibiotic resistant bacteria, are also discussed as interesting alternatives to antibiotics for therapeutic purposes. Currently, commercial bacteriocins are produced exclusively with natural producer organisms on complex substrates and are sold as semi-purified preparations or crude fermentates. To allow clinical application, efficacy of production and purity of the product need to be improved. This can be achieved by shifting production to recombinant microorganisms. Here, we identify Corynebacterium glutamicum as a suitable production host for the bacteriocin pediocin PA-1. C. glutamicum CR099 shows resistance to high concentrations of pediocin PA-1 and the bacteriocin was not inactivated when spiked into growing cultures of this bacterium. Recombinant C. glutamicum expressing a synthetic pedACDCgl operon releases a compound that has potent antimicrobial activity against Listeria monocytogenes and Listeria innocua and matches size and mass:charge ratio of commercial pediocin PA-1. Fermentations in shake flasks and bioreactors suggest that low levels of dissolved oxygen are favorable for production of pediocin. Under these conditions, however, reduced activity of the TCA cycle resulted in decreased availability of the important pediocin precursor l-asparagine suggesting options for further improvement. Overall, we demonstrate that C. glutamicum is a suitable host for recombinant production of bacteriocins of the pediocin family.


Asunto(s)
Bacteriocinas , Corynebacterium glutamicum , Listeria , Bacteriocinas/genética , Corynebacterium glutamicum/genética , Pediocinas/genética
10.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445321

RESUMEN

Listeria monocytogenes is an important food-borne pathogen and a serious concern to food industries. Bacteriocins are antimicrobial peptides produced naturally by a wide range of bacteria mostly belonging to the group of lactic acid bacteria (LAB), which also comprises many strains used as starter cultures or probiotic supplements. Consequently, multifunctional strains that produce bacteriocins are an attractive approach to combine a green-label approach for food preservation with an important probiotic trait. Here, a collection of bacterial isolates from raw cow's milk was typed by 16S rRNA gene sequencing and MALDI-Biotyping and supernatants were screened for the production of antimicrobial compounds. Screening was performed with live Listeria monocytogenes biosensors using a growth-dependent assay and pHluorin, a pH-dependent protein reporting membrane damage. Purification by cation exchange chromatography and further investigation of the active compounds in supernatants of two isolates belonging to the species Pediococcus acidilactici and Lactococcus garvieae suggest that their antimicrobial activity is related to heat-stable proteins/peptides that presumably belong to the class IIa bacteriocins. In conclusion, we present a pipeline of methods for high-throughput screening of strain libraries for potential starter cultures and probiotics producing antimicrobial compounds and their identification and analysis.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Descubrimiento de Drogas/métodos , Listeria monocytogenes/efectos de los fármacos , Probióticos , Animales , Antibacterianos/biosíntesis , Bacteriocinas/biosíntesis , Lactococcus/aislamiento & purificación , Lactococcus/metabolismo , Microbiota , Leche/microbiología , Pediococcus acidilactici/aislamiento & purificación , Pediococcus acidilactici/metabolismo
11.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32958719

RESUMEN

The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 µg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.


Asunto(s)
Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriocinas/farmacología , Modelos Animales de Enfermedad , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
12.
Pediatr Res ; 88(1): 57-65, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31261372

RESUMEN

BACKGROUND: There is currently a lack of experimental evidence for horizontal gene transfer (HGT) mechanisms in the human gut microbiota. The aim of this study was therefore to experimentally determine the HGT potential in the microbiota of a healthy preterm infant twin pair and to evaluate the global occurrence of the mobilized elements. METHODS: Stool samples were collected. Both shotgun metagenome sequencing and bacterial culturing were done for the same samples. A range of experimental conditions were used to test DNA transfer for the cultured isolates. Searches for global distribution of transferable elements were done for the ~120,000 metagenomic samples in the Sequence Read Archive (SRA) database. RESULTS: DNA transfer experiments demonstrated frequent transmission of an ESBL encoding IncI1 plasmid, a high copy number ColEI plasmid, and bacteriophage P1. Both IncI1 and ColE1 were abundant in the stool samples. In vitro competition experiments showed that transconjugants containing IncI1 plasmids outcompeted the recipient strain in the absence of antibiotic selection. The SRA searches indicated a global distribution of the mobilizable elements, with chicken identified as a possible reservoir for the IncI1 ESBL encoding plasmid. CONCLUSION: Our results experimentally support a major horizontal transmission and persistence potential of the preterm infant gut microbiota mobilome involving genes encoding ESBL.


Asunto(s)
Microbioma Gastrointestinal , Técnicas de Transferencia de Gen , Transferencia de Gen Horizontal , Familia de Multigenes , Animales , Antibacterianos , Bacteriófagos , Pollos , Mapeo Contig , Elementos Transponibles de ADN , ADN Bacteriano/análisis , Enterococcus/genética , Escherichia coli/genética , Humanos , Recién Nacido , Recien Nacido Prematuro , Plásmidos/genética , Prevalencia , Estudios Prospectivos , Análisis de Secuencia de ADN , Staphylococcus epidermidis/genética , Gemelos
14.
Microb Ecol Health Dis ; 28(1): 1348886, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959178

RESUMEN

The gut microbiota is considered an organ that co-develops with the host throughout its life. The composition and metabolic activities of the gut microbiota are subject to a complex interplay between the host genetics and environmental factors, such as lifestyle, diet, stress and antimicrobials. It is evident that certain prebiotics, and antimicrobials produced by lactic acid bacteria (LAB), can shape the composition of the gut microbiota and its metabolic activities to promote host health and/or prevent diseases. In this review, we aim to give an overview of the impact of prebiotic fibres, and bacteriocins from LAB, on the gut microbiota and its activities, which affect the physiology and health of the host. These represent two different mechanisms in modulating the gut microbiota, the first involving exploitative competition by which the growth of beneficial bacteria is promoted and the latter involving interference competition by which the growth of pathogens and other unwanted bacteria is prevented. For interference competition in the gut, bacteriocins offer special advantages over traditional antibiotics, in that they can be designed to act towards specific unwanted bacteria and other pathogens, without any remarkable collateral effects on beneficial microbes sharing the same niche.

15.
Appl Environ Microbiol ; 82(8): 2555-2562, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26896142

RESUMEN

Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins.Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes,lmgA ,lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes,lmgF,lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization-time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid.


Asunto(s)
Bacteriocinas/química , Bacteriocinas/metabolismo , Lactococcus lactis/metabolismo , Bacteriocinas/aislamiento & purificación , Vías Biosintéticas/genética , Cromosomas Bacterianos , Análisis Mutacional de ADN , Genes Bacterianos , Genoma Bacteriano , Lactococcus lactis/genética , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación , Oligopéptidos/metabolismo , Sistemas de Lectura Abierta , Operón , Plásmidos , Análisis de Secuencia de ADN , Espectrometría de Masa por Ionización de Electrospray
16.
Appl Environ Microbiol ; 82(17): 5216-24, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316965

RESUMEN

UNLABELLED: From raw milk we found 10 Lactococcus garvieae isolates that produce a new broad-spectrum bacteriocin. Though the isolates were obtained from different farms, they turned out to possess identical inhibitory spectra, fermentation profiles of sugars, and repetitive sequence-based PCR (rep-PCR) DNA patterns, indicating that they produce the same bacteriocin. One of the isolates (L. garvieae KS1546) was chosen for further assessment. Purification and peptide sequencing combined with genome sequencing revealed that the antimicrobial activity was due to a bacteriocin unit composed of three similar peptides of 32 to 34 amino acids. The three peptides are produced without leader sequences, and their genes are located next to each other in an operon-like structure, adjacent to the genes normally involved in bacteriocin transport (ABC transporter) and self-immunity. The bacteriocin, termed garvicin KS (GarKS), showed sequence homology to four multipeptide bacteriocins in databases: the known staphylococcal aureocin A70, consisting of four peptides, and three unannotated putative multipeptide bacteriocins produced by Bacillus cereus All these multipeptide bacteriocin loci show conserved genetic organization, including being located adjacent to conserved genetic determinants (Cro/cI and integrase) which are normally associated with mobile genetic elements or genome rearrangements. The antimicrobial activity of all multipeptide bacteriocins was confirmed with synthetic peptides, and all were shown to have broad antimicrobial spectra, with GarKS being the most active of them. The inhibitory spectrum of GarKS includes important pathogens belonging to the genera Staphylococcus, Bacillus, Listeria, and Enterococcus IMPORTANCE: Bacterial resistance to antibiotics is a very serious global problem. There are no new antibiotics with novel antimicrobial mechanisms in clinical trials. Bacteriocins use antimicrobial mechanisms different from those of antibiotics and can kill antibiotic-resistant bacteria, but the number of bacteriocins with very broad antimicrobial spectra is very small. In this study, we have found and purified a novel three-peptide bacteriocin, garvicin KS. By homology search, we were able to find one known and three novel sequence-related bacteriocins consisting of 3 or 4 peptides. None of the peptides has modified amino acids in its sequence. Thus, the activity of all bacteriocins was confirmed with chemically synthesized peptides. All of them, especially garvicin KS, have very broad antibacterial spectra, thus representing a great potential in antimicrobial applications in the food industry and medicine.


Asunto(s)
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Lactococcus/metabolismo , Secuencia de Aminoácidos , Antibacterianos/análisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/análisis , Bacteriocinas/genética , Lactococcus/química , Lactococcus/genética , Datos de Secuencia Molecular , Alineación de Secuencia
17.
Appl Environ Microbiol ; 82(17): 5364-74, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342562

RESUMEN

The Zn-dependent membrane-located protease YvjB has previously been shown to serve as a target receptor for LsbB, a class II leaderless lactococcal bacteriocin. Although yvjB is highly conserved in the genus Lactococcus, the bacteriocin appears to be active only against the subspecies L. lactis subsp. lactis Comparative analysis of the YvjB proteins of a sensitive strain (YvjBMN) and a resistant strain (YvjBMG) showed that they differ from each other in 31 positions. In this study, we applied site-directed mutagenesis and performed directed binding studies to provide biochemical evidence that LsbB interacts with the third transmembrane helix of YvjB in susceptible cells. The site-directed mutagenesis of LsbB and YvjB proteins showed that certain amino acids and the length of LsbB are responsible for the bacteriocin activity, most probably through adequate interaction of these two proteins; the essential amino acids in LsbB responsible for the activity are tryptophan (Trp(25)) and terminal alanine (Ala(30)). It was also shown that the distance between Trp(25) and terminal alanine is crucial for LsbB activity. The crucial region in YvjB for the interaction with LsbB is the beginning of the third transmembrane helix, particularly amino acids tyrosine (Tyr(356)) and alanine (Ala(353)). In vitro experiments showed that LsbB could interact with both YvjBMN and YvjBMG, but the strength of interaction is significantly less with YvjBMG In vivo experiments with immunofluorescently labeled antibody demonstrated that LsbB specifically interacts only with cells carrying YvjBMN IMPORTANCE: The antimicrobial activity of LsbB bacteriocin depends on the correct interaction with the corresponding receptor in the bacterial membrane of sensitive cells. Membrane-located bacteriocin receptors have essential primary functions, such as cell wall synthesis or sugar transport, and it seems that interaction with bacteriocins is suicidal for cells. This study showed that the C-terminal part of LsbB is crucial for the bacteriocin activity, most probably through adequate interaction with the third transmembrane domain of the YvjB receptor. The conserved Tyr(356) and Ala(353) residues of YvjB are essential for the function of this Zn-dependent membrane-located protease as a bacteriocin receptor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Endopeptidasas/metabolismo , Lactococcus lactis/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriocinas/química , Bacteriocinas/genética , Endopeptidasas/química , Endopeptidasas/genética , Lactococcus lactis/química , Lactococcus lactis/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios Proteicos , Alineación de Secuencia
18.
J Bacteriol ; 197(13): 2112-2121, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25733609

RESUMEN

UNLABELLED: A novel antimicrobial peptide designated enterocin O16 was purified from Enterococcus faecalis. Mass spectrometry showed a monoisotopic mass of 7,231 Da, and N-terminal Edman degradation identified a 29-amino-acid sequence corresponding to residues 90 to 119 of the EF_1097 protein. Bioinformatic analysis showed that enterocin O16 is composed of the 68 most C-terminal residues of the EF_1097 protein. Introduction of an in-frame isogenic deletion in the ef1097 gene abolished the production of enterocin O16. Enterocin O16 has a narrow inhibitory spectrum, as it inhibits mostly lactobacilli. Apparently, E. faecalis is intrinsically resistant to the antimicrobial peptide, as no immunity connected to the production of enterocin O16 could be identified. ef1097 has previously been identified as one of three loci regulated by the fsr quorum-sensing system. The introduction of a nonsense mutation into fsrB consistently impaired enterocin O16 production, but externally added gelatinase biosynthesis-activating pheromone restored the antimicrobial activity. Functional genetic analysis showed that the EF_1097 proprotein is processed extracellularly into enterocin O16 by the metalloprotease GelE. Thus, it is evident that the fsr quorum-sensing system constitutes the regulatory unit that controls the expression of the EF_1097 precursor protein and the protease GelE and that the latter is required for the formation of enterocin O16. On the basis of these results, this study identified antibacterial antagonism as a novel aspect related to the function of fsr and provides a rationale for why ef1097 is part of the fsr regulon. IMPORTANCE: The fsr quorum-sensing system modulates important physiological functions in E. faecalis via the activity of GelE. The present study presents a new facet of fsr signaling. The system controls the expression of three primary target operons (fsrABCD, gelE-sprE, and ef1097-ef1097b). We demonstrate that the concerted expression of these operons constitutes the elements necessary for the production of a bacteriocin-type peptide and that antimicrobial antagonism is an intrinsic function of fsr. The bacteriocin enterocin O16 consists of the 68 most C-terminal residues of the EF_1097 secreted proprotein. The GelE protease processes the EF_1097 proprotein into enterocin O16. In this manner, fsr signaling enables E. faecalis populations to express antimicrobial activity in a cell density-dependent manner.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/metabolismo , Enterococcus faecalis/metabolismo , Gelatinasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Percepción de Quorum/fisiología , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/genética , Proteínas Bacterianas/genética , Bacteriocinas/genética , Bacteriocinas/metabolismo , Secuencia de Bases , Hidrocarburos Aromáticos con Puentes/metabolismo , Enterococcus faecalis/genética , Gelatinasas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Datos de Secuencia Molecular
19.
J Biol Chem ; 289(34): 23838-45, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24993828

RESUMEN

LsbB is a class II leaderless lactococcal bacteriocin of 30 amino acids. In the present work, the structure and function relationship of LsbB was assessed. Structure determination by NMR spectroscopy showed that LsbB has an N-terminal α-helix, whereas the C-terminal of the molecule remains unstructured. To define the receptor binding domain of LsbB, a competition assay was performed in which a systematic collection of truncated peptides of various lengths covering different parts of LsbB was used to inhibit the antimicrobial activity of LsbB. The results indicate that the outmost eight-amino acid sequence at the C-terminal end is likely to contain the receptor binding domain because only truncated fragments from this region could antagonize the antimicrobial activity of LsbB. Furthermore, alanine substitution revealed that the tryptophan in position 25 (Trp(25)) is crucial for the blocking activity of the truncated peptides, as well as for the antimicrobial activity of the full-length bacteriocin. LsbB shares significant sequence homology with five other leaderless bacteriocins, especially at their C-terminal halves where all contain a conserved KXXXGXXPWE motif, suggesting that they might recognize the same receptor as LsbB. This notion was supported by the fact that truncated peptides with sequences derived from the C-terminal regions of two LsbB-related bacteriocins inhibited the activity of LsbB, in the same manner as found with the truncated version of LsbB. Taken together, these structure-function studies provide strong evidence that the receptor-binding parts of LsbB and sequence-related bacteriocins are located in their C-terminal halves.


Asunto(s)
Bacteriocinas/metabolismo , Secuencia de Aminoácidos , Bacteriocinas/química , Secuencia de Bases , Sitios de Unión , Dicroismo Circular , Cartilla de ADN , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Reacción en Cadena de la Polimerasa , Conformación Proteica
20.
Infect Immun ; 83(5): 2156-67, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25776747

RESUMEN

In the present study, the commensal and pathogenic host-microbe interaction of Enterococcus faecalis was explored using a Caenorhabditis elegans model system. The virulence of 28 E. faecalis isolates representing 24 multilocus sequence types (MLSTs), including human commensal and clinical isolates as well as isolates from animals and of insect origin, was investigated using C. elegans strain glp-4 (bn2ts); sek-1 (km4). This revealed that 6 E. faecalis isolates behaved in a commensal manner with no nematocidal effect, while the remaining strains showed a time to 50% lethality ranging from 47 to 120 h. Principal component analysis showed that the difference in nematocidal activity explained 94% of the variance in the data. Assessment of known virulence traits revealed that gelatinase and cytolysin production accounted for 40.8% and 36.5% of the observed pathogenicity, respectively. However, coproduction of gelatinase and cytolysin did not increase virulence additively, accounting for 50.6% of the pathogenicity and therefore indicating a significant (26.7%) saturation effect. We employed a comparative genomic analysis approach using the 28 isolates comprising a collection of 82,356 annotated coding sequences (CDS) to identify 2,325 patterns of presence or absence among the investigated strains. Univariate statistical analysis of variance (ANOVA) established that individual patterns positively correlated (n = 61) with virulence. The patterns were investigated to identify potential new virulence traits, among which we found five patterns consisting of the phage03-like gene clusters. Strains harboring phage03 showed, on average, 17% higher killing of C. elegans (P = 4.4e(-6)). The phage03 gene cluster was also present in gelatinase-and-cytolysin-negative strain E. faecalis JH2-2. Deletion of this phage element from the JH2-2 clinical strain rendered the mutant apathogenic in C. elegans, and a similar mutant of the nosocomial V583 isolate showed significantly attenuated virulence. Bioinformatics investigation indicated that, unlike other E. faecalis virulence traits, phage03-like elements were found at a higher frequency among nosocomial isolates. In conclusion, our report provides a valuable virulence map that explains enhancement in E. faecalis virulence and contributes to a deeper comprehension of the genetic mechanism leading to the transition from commensalism to a pathogenic lifestyle.


Asunto(s)
Bacteriófagos/genética , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecalis/genética , Profagos/genética , Factores de Virulencia/genética , Adulto , Animales , Modelos Animales de Enfermedad , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecalis/virología , Genoma Bacteriano , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Lactante , Insectos/microbiología , Tipificación de Secuencias Multilocus , Análisis de Supervivencia , Simbiosis , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA