Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(32): e202218850, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36637348

RESUMEN

Hydrogen (H2 ) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon-neutral standards. The share of green H2 is still too low to meet the net-zero target, while the demand for high-quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high-quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon-neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.

2.
Magn Reson Med ; 87(5): 2224-2238, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34932233

RESUMEN

PURPOSE: Many aspects and imperfections of gradient dynamics in MRI have been successfully captured by linear time-invariant (LTI) models. Changes in gradient behavior due to heating, however, violate time invariance. The goal of this work is to study such changes at the level of transfer functions and model them by thermal extension of the LTI framework. METHODS: To study the impact of gradient heating on transfer functions, a clinical MR system was heated using a range of high-amplitude DC and AC waveforms, each followed by measuring transfer functions in rapid succession while the system cooled down. Simultaneously, gradient temperature was monitored with an array of temperature sensors positioned according to initial infrared recordings of the gradient tube. The relation between temperatures and transfer functions is cast into local and global linear models. The models are analysed in terms of self-consistency, conditioning, and prediction performance. RESULTS: Pronounced thermal effects are observed in the time resolved transfer functions, largely attributable to in-coil eddy currents and mechanical resonances. Thermal modeling is found to capture these effects well. The keys to good model performance are well-placed temperature sensors and suitable training data. CONCLUSION: Heating changes gradient response, violating time invariance. The utility of LTI modeling can nevertheless be recovered by a linear thermal extension, relying on temperature sensing and adequate one-time training.


Asunto(s)
Imagen por Resonancia Magnética , Modelos Lineales , Fantasmas de Imagen
3.
Magn Reson Med ; 87(1): 272-280, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34398985

RESUMEN

PURPOSE: The aim of this work is the reconciliation of high spatial and temporal resolution for MRI. For this purpose, a novel sampling strategy for 3D encoding is proposed, which provides flexible k-space segmentation along with uniform sampling density and benign filtering effects related to signal decay. METHODS: For time-critical MRI applications such as functional MRI (fMRI), 3D k-space is usually sampled by stacking together 2D trajectories such as echo planar imaging (EPI) or spiral readouts, where each shot covers one k-space plane. For very high temporal and medium to low spatial resolution, tilted hexagonal sampling (T-Hex) was recently proposed, which allows the acquisition of a larger k-space volume per excitation than can be covered with a planar readout. Here, T-Hex is described in a modified version where it instead acquires a smaller k-space volume per shot for use with medium temporal and high spatial resolution. RESULTS: Mono-planar T-Hex sampling provides flexibility in the choice of speed, signal-to-noise ratio (SNR), and contrast for rapid MRI acquisitions. For use with a conventional gradient system, it offers the greatest benefit in a regime of high in-plane resolution <1 mm. The sampling scheme is combined with spirals for high sampling speed as well as with more conventional EPI trajectories. CONCLUSION: Mono-planar T-Hex sampling combines fast 3D encoding with SNR efficiency and favorable depiction characteristics regarding noise amplification and filtering effects from T2∗ decay, thereby providing flexibility in the choice of imaging parameters. It is attractive both for high-resolution time series such as fMRI and for applications that require rapid anatomical imaging.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Imagen por Resonancia Magnética , Relación Señal-Ruido
4.
Neuroimage ; 226: 117286, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32992003

RESUMEN

T2*-weighted gradient-echo sequences count among the most widely used techniques in neuroimaging and offer rich magnitude and phase contrast. The susceptibility effects underlying this contrast scale with B0, making T2*-weighted imaging particularly interesting at high field. High field also benefits baseline sensitivity and thus facilitates high-resolution studies. However, enhanced susceptibility effects and high target resolution come with inherent challenges. Relying on long echo times, T2*-weighted imaging not only benefits from enhanced local susceptibility effects but also suffers from increased field fluctuations due to moving body parts and breathing. High resolution, in turn, renders neuroimaging particularly vulnerable to motion of the head. This work reports the implementation and characterization of a system that aims to jointly address these issues. It is based on the simultaneous operation of two control loops, one for field stabilization and one for motion correction. The key challenge with this approach is that the two loops both operate on the magnetic field in the imaging volume and are thus prone to mutual interference and potential instability. This issue is addressed at the levels of sensing, timing, and control parameters. Performance assessment shows the resulting system to be stable and exhibit adequate loop decoupling, precision, and bandwidth. Simultaneous field and motion control is then demonstrated in examples of T2*-weighted in vivo imaging at 7T.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Retroalimentación , Humanos , Movimiento (Física)
5.
Magn Reson Med ; 85(5): 2507-2523, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33270941

RESUMEN

PURPOSE: The purpose of this work is to devise and demonstrate an encoding strategy for 3D MRI that reconciles high speed with flexible segmentation, uniform k-space density, and benign T2∗ effects. METHODS: Fast sampling of a 3D k-space is typically accomplished by 2D readouts per shot using EPI trains or spiral readouts. Tilted hexagonal (T-Hex) sampling is a way of acquiring more k-space volume per excitation while maintaining uniform sampling density and a smooth T2∗ filter. The k-space volume covered per shot is controlled by the tilting angle. Image reconstruction is performed with a 3D extension of the iterative SENSE approach, incorporating actual field dynamics and static off-resonance. T-Hex imaging is compared with established 3D schemes in terms of speed and noise performance. RESULTS: Tilted hexagonal acquisition is found to achieve greater imaging speed than known alternatives, particularly in combination with spiral trajectories. The interplay of the proposed 3D trajectories, array detection, and off-resonance is successfully addressed by iterative inversion of the full signal model. Enhanced coverage per shot is of greatest utility for high speed in an intermediate resolution regime of 1 to 4 mm. T-Hex EPI combines the benefits of extended coverage per shot with increased robustness against off-resonance effects. CONCLUSION: Sampling of tilted hexagonal grids is a feasible means of gaining 3D imaging speed with near-optimal SNR efficiency and benign depiction properties. It is a particularly promising technique for time-resolved applications such as fMRI.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Algoritmos , Encéfalo/diagnóstico por imagen , Sistemas de Computación , Imagen por Resonancia Magnética
6.
Magn Reson Med ; 84(2): 751-761, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31961966

RESUMEN

PURPOSE: To demonstrate the utility of a high-performance gradient insert for ultrafast MRI of the human head. METHODS: EPI was used for the first time with a readout gradient amplitude of 100 mT/m, 1200 T/m/s slew rate, and nearly 1 MHz signal bandwidth for human head scanning. To avoid artefacts due to eddy currents, the magnetic field was dynamically monitored with NMR probes at multiple points, modeled by solid harmonics up to fifth order, and included in the image reconstruction. An approximation of a negligible intra-echo effect of the eddy currents was made to accelerate the high-order reconstruction. The field monitoring-based approach was compared with a recently proposed phase error estimation from separate reconstructions of even and odd echoes. RESULTS: Images obtained with the gradient insert have significantly lower distortions than it is the case with the whole body 30 mT/m, 200 T/m/s gradients of the same system. However, eddy currents of high spatial order must be properly characterized and corrected for in order to avoid a persistent 2D Nyquist ghost. Multi-position monitoring proves to be a robust method to measure the eddy currents and allows higher undersampling rates than the image-based approach. The proposed approximation of the eddy currents effect allows a significant acceleration of the high-order reconstruction by a separate processing of each spatial dimension. CONCLUSION: Strong gradients with adequate switching rates are highly beneficial for the quality of EPI provided that robust measures are taken to include the contribution of eddy currents to the image encoding.


Asunto(s)
Artefactos , Imagen Eco-Planar , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Campos Magnéticos , Imagen por Resonancia Magnética , Fantasmas de Imagen
7.
Magn Reson Med ; 84(1): 89-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31840296

RESUMEN

PURPOSE: To enhance the utility of motion detection with nuclear magnetic resonance (NMR) markers by removing the need for sequence-dependent calibration. METHODS: Two sets of NMR markers are used for simultaneous observation of magnetic field dynamics during imaging procedures. A set of stationary markers at known positions in the laboratory frame serves to determine the field evolution in that frame. Concurrent recording from a set of head-mounted markers then permits calculating their lab-frame positions and derived rigid-body motion parameters. The precision and accuracy of this approach are evaluated relative to current calibration-based solutions. Use for prospective motion correction is then demonstrated in high-resolution imaging of long scan duration. RESULTS: Motion detection with real-time field tracking overcomes the need for explicit calibration without compromising precision, which is assessed at 10 to 30 µm. Relative to full conventional calibration, it is found to offer superior robustness against thermal drift. Relative to more economical modes of calibration, it achieves substantially higher accuracy. Prospective motion correction based on real-time field tracking resulted in consistently high image quality even when head motion exceeded the image resolution by one order of magnitude. CONCLUSION: Real-time field tracking enables motion detection with NMR markers without calibration overhead and thus overcomes a key obstacle toward routine use. In addition, it renders this mode of motion tracking more robust against system imperfections.


Asunto(s)
Laboratorios , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Movimiento (Física) , Estudios Prospectivos
8.
Magn Reson Med ; 84(4): 1933-1946, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32176828

RESUMEN

PURPOSE: To achieve high resolution in imaging of short-T2 materials and tissues by using a high-performance human-sized gradient insert with strength up to 200 mT/m and 100% duty cycle. METHODS: Dedicated short-T2 methodology and hardware are used, such as the pointwise encoding time reduction with radial acquisition (PETRA) technique with modulated excitation pulses, optimized radio-frequency hardware, and a high-performance gradient insert. A theoretical analysis of actual spatial resolution and SNR is provided to support the choice of scan parameters and interpretation of the results. Imaging is performed in resolution phantoms, animal specimen, and human volunteers at both conventional and maximum available gradient strengths and compared using image subtraction. RESULTS: Calculations suggest that increasing gradient strength beyond conventional values considerably improves both actual resolution and SNR efficiency in short-T2 imaging. Resolution improvements are confirmed in all investigated samples, in particular 2 mm slots were resolved in a hard-plastic plate with T2 ≈ 10 µs and in vivo musculoskeletal images were acquired at isotropic 200 µm resolution. Expected improvements in signal yield are realized in fine structures benefitting from high resolution but to less extent in regions of low contrast where decay-related blurring leads to signal overlap between neighboring locations. CONCLUSION: Strong gradients with high duty cycle enable short-T2 imaging at unprecedentedly high resolution, holding the potential for improving MRI of, eg, bone, tendon, lung, or teeth. Moreover, it allows direct access of tissues with T2 of tens of microseconds such as myelin or collagen.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Animales , Voluntarios Sanos , Humanos , Vaina de Mielina , Fantasmas de Imagen
9.
Neuroimage ; 168: 88-100, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774650

RESUMEN

We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T2* contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/anatomía & histología , Femenino , Humanos , Masculino , Adulto Joven
10.
Magn Reson Med ; 79(4): 2036-2045, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28856717

RESUMEN

PURPOSE: MRI of tissues with short coherence lifetimes T2 or T2* can be performed efficiently using zero echo time (ZTE) techniques such as algebraic ZTE, pointwise encoding time reduction with radial acquisition (PETRA), and water- and fat-suppressed proton projection MRI (WASPI). They share the principal challenge of recovering data in central k-space missed due to an initial radiofrequency dead time. The purpose of this study was to compare the three techniques directly, with a particular focus on their behavior in the presence of ultra-short-lived spins. METHODS: The most direct comparison was enabled by aligning acquisition and reconstruction strategies of the three techniques. Image quality and short- T2* performance were investigated using point spread functions, 3D simulations, and imaging of phantom and bone samples with short (<1 ms) and ultra-short (<100 µs) T2*. RESULTS: Algebraic ZTE offers favorable properties but is limited to k-space gaps up to approximately three Nyquist dwells. At larger gaps, PETRA enables robust imaging with little compromise in image quality, whereas WASPI may be prone to artifacts from ultra-short T2* species. CONCLUSION: For small k-space gaps (<4 dwells) and T2* much larger than the dead time, all techniques enable artifact-free short- T2* MRI. However, if these requirements are not fulfilled careful consideration is needed and PETRA will generally achieve better image quality. Magn Reson Med 79:2036-2045, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Algoritmos , Animales , Artefactos , Huesos/diagnóstico por imagen , Bovinos , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Modelos Teóricos , Fantasmas de Imagen , Polimetil Metacrilato/química , Protones , Ondas de Radio , Tibia/diagnóstico por imagen
11.
Magn Reson Med ; 79(4): 2046-2056, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28840611

RESUMEN

PURPOSE: To develop a method of tracking active NMR markers that requires no alterations of common imaging sequences and can be used for prospective motion correction (PMC) in brain MRI. METHODS: Localization of NMR markers is achieved by acquiring short signal snippets in rapid succession and evaluating them jointly. To spatially encode the markers, snippets are timed such that signal phase is accrued during sequence intervals with suitably diverse gradient actuation. For motion tracking and PMC in brain imaging, the markers are mounted on a lightweight headset. PMC is then demonstrated with high-resolution T2 *- and T1 -weighted imaging sequences in the presence of instructed as well as residual unintentional head motion. RESULTS: With both unaltered sequences, motion tracking was achieved with precisions on the order of 10 µm and 0.01° and temporal resolution of 48 and 39 ms, respectively. On this basis, PMC improved image quality significantly throughout. CONCLUSION: The proposed approach permits high-precision motion tracking and PMC with standard imaging sequences. It does so without altering sequence design and thus overcomes a key hindrance to routine motion tracking with NMR markers. Magn Reson Med 79:2046-2057, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Calibración , Diseño de Equipo , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
12.
Magn Reson Med ; 79(6): 3256-3266, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28983969

RESUMEN

PURPOSE: The goal of this study was to devise a gradient system for MRI in humans that reconciles cutting-edge gradient strength with rapid switching and brings up the duty cycle to 100% at full continuous amplitude. Aiming to advance neuroimaging and short-T2 techniques, the hardware design focused on the head and the extremities as target anatomies. METHODS: A boundary element method with minimization of power dissipation and stored magnetic energy was used to design anatomy-targeted gradient coils with maximally relaxed geometry constraints. The design relies on hollow conductors for high-performance cooling and split coils to enable dual-mode gradient amplifier operation. With this approach, strength and slew rate specifications of either 100 mT/m with 1200 mT/m/ms or 200 mT/m with 600 mT/m/ms were reached at 100% duty cycle, assuming a standard gradient amplifier and cooling unit. RESULTS: After manufacturing, the specified values for maximum gradient strength, maximum switching rate, and field geometry were verified experimentally. In temperature measurements, maximum local values of 63°C were observed, confirming that the device can be operated continuously at full amplitude. Testing for peripheral nerve stimulation showed nearly unrestricted applicability in humans at full gradient performance. In measurements of acoustic noise, a maximum average sound pressure level of 132 dB(A) was determined. In vivo capability was demonstrated by head and knee imaging. Full gradient performance was employed with echo planar and zero echo time readouts. CONCLUSION: Combining extreme gradient strength and switching speed without duty cycle limitations, the described system offers unprecedented options for rapid and short-T2 imaging. Magn Reson Med 79:3256-3266, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Rodilla/diagnóstico por imagen , Masculino , Dinámicas no Lineales , Fantasmas de Imagen , Temperatura
13.
Neuroimage ; 154: 106-114, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28088483

RESUMEN

Physiological noise originating in cardiovascular and respiratory processes is a substantial confound in BOLD fMRI. When unaccounted for it reduces the temporal SNR and causes error in inferred brain activity and connectivity. Physiology correction typically relies on auxiliary measurements with peripheral devices such as ECG, pulse oximeters, and breathing belts. These require direct skin contact or at least a tight fit, impairing subject comfort and adding to the setup time. In this work, we explore a touch-free alternative for physiology recording, using magnetic detection with NMR field probes. Placed close to the chest such probes offer high sensitivity to cardiovascular and respiratory dynamics without mechanical contact. This is demonstrated by physiology regression in a typical fMRI scenario at 7T, including validation against standard devices. The study confirms essentially equivalent performance of noise models based on conventional recordings and on field probes. It is shown that the field probes may be positioned in the subject's back such that they could be readily integrated in the patient table.


Asunto(s)
Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico/instrumentación , Procesamiento de Señales Asistido por Computador , Adulto , Humanos
14.
Neuroimage ; 154: 92-105, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077303

RESUMEN

This work investigates the role of magnetic field fluctuations as a confound in fMRI. In standard fMRI experiments with single-shot EPI acquisition at 3 Tesla the uniform and gradient components of the magnetic field were recorded with NMR field sensors. By principal component analysis it is found that differences of field evolution between the EPI readouts are explainable by few components relating to slow and within-shot field dynamics of hardware and physiological origin. The impact of fluctuating field components is studied by selective data correction and assessment of its influence on image fluctuation and SFNR. Physiological field fluctuations, attributed to breathing, were found to be small relative to those of hardware origin. The dominant confounds were hardware-related and attributable to magnet drift and thermal changes. In raw image time series, field fluctuation caused significant SFNR loss, reflected by a 67% gain upon correction. Large part of this correction can be accomplished by traditional image realignment, which addresses slow and spatially uniform field changes. With realignment, explicit field correction increased the SFNR on the order of 6%. In conclusion, field fluctuations are a relevant confound in fMRI and can be addressed effectively by retrospective data correction. Based on the physics involved it is anticipated that the advantage of full field correction increases with field strength, with non-Cartesian readouts, and upon phase-sensitive BOLD analysis.


Asunto(s)
Imagen Eco-Planar/métodos , Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fenómenos Magnéticos , Imagen por Resonancia Magnética/métodos , Adulto , Humanos , Adulto Joven
15.
Magn Reson Med ; 78(4): 1607-1622, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27797105

RESUMEN

PURPOSE: The goal of this contribution is to enhance the fidelity and switching speed of gradient and shim fields by advancing pre-emphasis toward broadband and full cross-term correction. THEORY AND METHODS: The proposed approach is based on viewing gradient and shim chains as linear, time-invariant (LTI) systems. Pre-emphasis is accomplished by inversion of a broadband digital system model. In the multiple-channel case, it amounts to a matrix of broadband filters that perform concerted self- and cross-term correction. This approach is demonstrated with gradients and shims up to the third order in a 7 Tesla whole-body MR system. RESULTS: Pre-emphasis by LTI model inversion is first verified by studying settling speeds and response behavior without and with the correction. It is then demonstrated for rapid shim updating, achieving substantially enhanced fidelity of field dynamics and shim settling within approximately 1 ms. In single-shot echo-planar imaging (EPI) acquisitions in vivo, this benefit is shown to translate into enhanced geometric fidelity. CONCLUSIONS: The fidelity of gradient and shim dynamics can be greatly enhanced by pre-emphasis based on inverting a general LTI system model. Permitting shim settling on the millisecond scale, broadband multiple-channel pre-emphasis promises to render higher-order shimming fully versatile at the level of MRI sequence design. Magn Reson Med 78:1607-1622, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Humanos , Modelos Lineales , Modelos Biológicos , Fantasmas de Imagen
16.
Magn Reson Med ; 77(1): 83-91, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770473

RESUMEN

PURPOSE: The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. METHODS: Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B0 , and coil sensitivity encoding. The encoding model is determined by B0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. RESULTS: Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. CONCLUSION: Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Masculino , Fantasmas de Imagen
17.
NMR Biomed ; 30(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28678353

RESUMEN

T2 * mapping offers access to a number of important structural and physiological tissue parameters. It is robust against RF field variations and overall signal scaling. However, T2 * measurement is highly sensitive to magnetic field errors, including perturbations caused by breathing motion at high baseline field. The goal of this work is to assess this issue in T2 * mapping of the brain and to study the benefit of field stabilization by feedback field control. T2 * quantification in the brain was investigated by phantom and in vivo measurements at 7 T. Repeated measurements were made with and without feedback field control using NMR field sensing and dynamic third-order shim actuation. The precision and reliability of T2 * quantification was assessed by studying variation across repeated measurements as well as fitting errors. Breathing effects were found to introduce significant error in T2 * mapping results. Field control mitigates this problem substantially. In a phantom it virtually eliminates the effects of emulated breathing fluctuations in the head. In vivo it enhances the structural fidelity of T2 * maps and reduces fitting residuals along with standard deviation. In conclusion, feedback field control improves the fidelity of T2 * mapping in the presence of field perturbations. It is an effective means of countering bulk susceptibility effects of breathing and hence holds particular promise for efforts to leverage high field for T2 * studies in vivo.


Asunto(s)
Retroalimentación , Imagen por Resonancia Magnética/métodos , Adulto , Humanos , Masculino , Fantasmas de Imagen
18.
MAGMA ; 30(5): 473-488, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28444504

RESUMEN

OBJECTIVES: The accuracy and precision of the parallel RF excitations are highly dependent on the spatial and temporal fidelity of the magnetic fields involved in spin excitation. The consistency between the nominal and effective fields is typically limited by the imperfections of the employed hardware existing both in the gradient system and the RF chain. In this work, we experimentally presented highly improved spatially tailored parallel excitations by turning the native hardware accuracy challenge into a measurement and control problem using an advanced field camera technology to fully correct parallel RF transmission experiment. MATERIALS AND METHODS: An array of NMR field probes is used to measure the multiple channel RF pulses and gradient waveforms recording the high power RF pulses simultaneously with low frequency gradient fields on equal time basis. The recorded waveforms were integrated in RF pulse design for gradient trajectory correction, time imperfection compensation and introduction of iterative RF pre-emphasis. RESULTS: Superior excitation accuracy was achieved. Two major applications were presented at 7 Tesla including multi-dimensional tailored RF pulses for spatially selective excitation and slice-selective spoke pulses for [Formula: see text] mitigation. CONCLUSION: Comprehensive field monitoring is a highly effective means of correcting for the field deviations during parallel transmit pulse design.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Ondas de Radio , Algoritmos , Diseño de Equipo , Humanos , Imagenología Tridimensional , Campos Magnéticos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/estadística & datos numéricos , Modelos Teóricos , Fantasmas de Imagen
19.
Magn Reson Med ; 76(2): 430-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26307944

RESUMEN

PURPOSE: Real-time field control can serve to reduce respiratory field perturbations during T2 * imaging at high fields. This work investigates the effectiveness of this approach in relation to key variables such as patient physique, breathing patterns, slice location, and the choice of sequence. METHODS: To cover variation in physical constitution and breathing behavior, volunteers with a wide range of body-mass-indices were asked to breathe either normally or deeply during T2 *-weighted image acquisition at 7T. Ensuing field fluctuation was countered by real-time field control or merely recorded in reference experiments. The impact of the control system on image quality was assessed by classifying and grading artifacts related to field fluctuation. RESULTS: The amplitude of respiratory field changes and related artifacts were generally stronger for subjects with higher body-mass-index and for lower slices. Field control was found effective at mitigating all five types of artifacts that were studied. Overall image quality was systematically improved. Residual artifacts in low slices are attributed to insufficient spatial order of the control system. CONCLUSION: Real-time field control was found to be a robust means of countering respiratory field perturbations in variable conditions encountered in high-field brain imaging. Reducing net fluctuation, it generally expands the feasibility of high-field T2 * imaging toward challenging patients and brain regions. Magn Reson Med 76:430-439, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Algoritmos , Sistemas de Computación , Campos Electromagnéticos , Femenino , Humanos , Masculino , Radiometría/métodos , Reproducibilidad de los Resultados , Mecánica Respiratoria , Sensibilidad y Especificidad
20.
Magn Reson Med ; 75(4): 1831-40, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25975352

RESUMEN

PURPOSE: MR image formation and interpretation relies on highly accurate dynamic magnetic fields of high fidelity. A range of mechanisms still limit magnetic field fidelity, including magnet drifts, eddy currents, and finite linearity and stability of power amplifiers used to drive gradient and shim coils. Addressing remaining errors by means of hardware, sequence, or signal processing optimizations, calls for immediate observation by magnetic field monitoring. The present work presents a stand-alone monitoring system delivering insight into such field imperfections for MR sequence and system analysis. METHODS: A flexible NMR field probe-based stand-alone monitoring system, built on a software-defined-radio approach, is introduced and used to sense field dynamics up to third-order in space in a selection of situations with different time scales. RESULTS: Highly sensitive trajectories are measured and successfully used for image reconstruction. Further field perturbations due to mechanical oscillations and thermal field drifts following demanding gradient use and external interferences are studied. CONCLUSION: A flexible and versatile monitoring system is presented, delivering camera-like access to otherwise hardly accessible field dynamics with nanotesla resolution. Its stand-alone nature enables field analysis even during unknown MR system states.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Procesamiento de Señales Asistido por Computador , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA