Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 152(3): 504-18, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374346

RESUMEN

Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ubiquinona/análogos & derivados , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Dimetilaliltranstransferasa/genética , Aparato de Golgi/metabolismo , Corazón/embriología , Humanos , Miocardio/citología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
2.
Org Biomol Chem ; 22(29): 5948-5959, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979663

RESUMEN

The most prominent pathophysiological hallmark of Alzheimer's disease is the aggregation of amyloid-ß (Aß) peptides into senile plaques. Curcumin and its derivatives exhibit a high affinity for binding to Aß fibrils, effectively inhibiting their growth. This property holds promise for both therapeutic applications and diagnostic molecular imaging. In this study, curcumin was functionalized with perfluoro-tert-butyl groups to create candidate molecular probes specifically targeted to Aß fibrils for use in 19F-magnetic resonance imaging. Two types of fluorinated derivatives were considered: mono-substituted (containing nine fluorine atoms per molecule) and disubstituted (containing eighteen fluorine atoms). The linker connecting the perfluoro moiety with the curcumin scaffold was evaluated for its impact on binding affinity and water solubility. All mono-substituted compounds and one disubstituted compound exhibited a binding affinity toward Aß fibrils on the same order of magnitude as reference curcumin. The insertion of a charged carboxylate group into the linker enhanced the water solubility of the probes. Compound Curc-Glu-F9 (with one L-glutamyl moiety and a perfluoro-tert-butyl group), showed the best properties in terms of binding affinity towards Aß fibrils, water solubility, and intensity of the 19F-NMR signal in the Aß oligomer bound form.


Asunto(s)
Péptidos beta-Amiloides , Curcumina , Placa Amiloide , Curcumina/química , Curcumina/farmacología , Curcumina/síntesis química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Halogenación , Humanos , Solubilidad , Imagen por Resonancia Magnética con Fluor-19 , Estructura Molecular
3.
Chemistry ; 27(48): 12289-12293, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34160090

RESUMEN

One possibility for the non-invasive imaging of encapsulated cell grafts is to label the lumen of cell embedding capsules with a redox-responsive probe, as an increased extracellular reducing potential can be considered as a marker of hypoxia-induced necrosis. A Gd(III)-HPDO3A-like chelate has been conjugated to glycol-chitosan through a redox-responsive disulphide bond to obtain a contrast agent for Magnetic Resonance Imaging (MRI). Such a compound can be interspersed with fibroblasts within the lumen of alginate-chitosan capsules. Increasing reducing conditions within the extracellular microenvironment lead to the reductive cleavage of the disulphide bond and to the release of gadolinium in the form of a low molecular weight, non-ionic chelate. The efflux of such chelate from capsules is readily detected by a decrease of contrast enhancement in T1 -weighted MR images.


Asunto(s)
Quitosano , Alginatos , Cápsulas , Medios de Contraste , Imagen por Resonancia Magnética , Oxidación-Reducción
4.
Chemphyschem ; 22(11): 1042-1048, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33720491

RESUMEN

An efficient synthesis of vinyl-[1-13 C]pyruvate has been reported, from which 13 C hyperpolarized (HP) ethyl-[1-13 C]pyruvate has been obtained by means of ParaHydrogen Induced Polarization (PHIP). Due to the intrinsic lability of pyruvate, which leads quickly to degradation of the reaction mixture even under mild reaction conditions, the vinyl-ester has been synthesized through the intermediacy of a more stable ketal derivative. 13 C and 1 H hyperpolarizations of ethyl-[1-13 C]pyruvate, hydrogenated using ParaHydrogen, have been compared to those observed on the more widely used allyl-derivative. It has been demonstrated that the spin order transfer from ParaHydrogen protons to 13 C, is more efficient on the ethyl than on the allyl-esterdue to the larger J-couplings involved. The main requirements needed for the biological application of this HP product have been met, i. e. an aqueous solution of the product at high concentration (40 mM) with a good 13 C polarization level (4.8 %) has been obtained. The in vitro metabolic transformation of the HP ethyl-[1-13 C]pyruvate, catalyzed by an esterase, has been observed. This substrate appears to be a good candidate for in vivo metabolic investigations using PHIP hyperpolarized probes.


Asunto(s)
Hidrógeno/química , Piruvatos/química , Isótopos de Carbono , Hidrogenación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Agua/química
5.
Molecules ; 26(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34684715

RESUMEN

Aziridine derivatives involved in nucleophilic ring-opening reactions have attracted great interest, since they allow the preparation of biologically active molecules. A chemoselective and mild procedure to convert a peptide cysteine residue into lanthionine via S-alkylation on aziridine substrates is presented in this paper. The procedure relies on a post-synthetic protocol promoted by molecular sieves to prepare lanthionine-containing peptides and is assisted by microwave irradiation. In addition, it represents a valuable alternative to the stepwise approach, in which the lanthionine precursor is incorporated into peptides as a building block.


Asunto(s)
Alanina/análogos & derivados , Aziridinas/química , Cromatografía en Gel/métodos , Sulfuros/química , Alanina/química , Alquilación , Catálisis , Cromatografía Liquida , Cisteína/química , Calefacción , Microondas , Estructura Molecular , Péptidos/química
6.
J Org Chem ; 84(22): 14957-14964, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31625377

RESUMEN

A green and efficient method for preparing lanthionine peptides by a highly chemoselective and stereochemically controlled procedure is presented. It involves an S-alkylation reaction, promoted by activated molecular sieves, on chiral cyclic sulfamidates, both N-protected and unprotected. Of note, the reaction yield was high also for cyclic sulfamidates bearing a free amine group, while other strategies failed to achieve a ring-opening nucleophilic reaction with N-unprotected substrates. To prove the feasibility of the procedure, the synthesis of a thioether ring B mimetic of the natural lantibiotic haloduracin ß was performed.


Asunto(s)
Alanina/análogos & derivados , Péptidos/química , Sulfuros/síntesis química , Ácidos Sulfónicos/química , Alanina/química , Alquilación , Estructura Molecular , Sulfuros/química
7.
Bioconjug Chem ; 29(4): 1428-1437, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29470084

RESUMEN

Molecular imaging requires the specific accumulation of contrast agents at the target. To exploit the superb resolution of MRI for applications in molecular imaging, gadolinium chelates, as the MRI contrast agents (CA), have to be conjugated to a specific vector able to recognize the epitope of interest. Several Gd(III)-chelates can be chemically linked to the same binding vector in order to deliver multiple copies of the CA (multimers) in a single targeting event thus increasing the sensitivity of the molecular probe. Herein three novel bifunctional agents, carrying one functional group for the bioconjugation to targeting vectors and four Gd(III)-AAZTA chelate functions for MRI contrast enhancement (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), are reported. The relaxivity in the tetrameric derivatives is 16.4 ± 0.2 mMGd-1 s-1 at 21.5 MHz and 25 °C, being 2.4-fold higher than that of parent, monomeric Gd(III)-AAZTA. These compounds can be used as versatile building blocks to insert preformed, high relaxivity, and high density Gd-centers to biological targeting vectors. As an example, we describe the use of these bifunctional Gd(III)-chelates to label a fibrin-targeting peptide.


Asunto(s)
Acetatos/síntesis química , Azepinas/síntesis química , Quelantes/síntesis química , Medios de Contraste/síntesis química , Gadolinio/química , Compuestos Organometálicos/síntesis química , Acetatos/química , Acetatos/metabolismo , Azepinas/química , Azepinas/metabolismo , Quelantes/química , Quelantes/metabolismo , Medios de Contraste/química , Medios de Contraste/metabolismo , Dimerización , Fibrina/metabolismo , Gadolinio/metabolismo , Humanos , Imagen por Resonancia Magnética , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Unión Proteica
8.
Chemistry ; 24(23): 6231-6238, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29457654

RESUMEN

An efficient and rapid procedure for synthesizing S-linked glycopeptides is reported. The approach uses activated molecular sieves as a base to promote the selective S-alkylation of readily prepared cysteine-containing peptides, upon reaction of appropriate glycosyl halides. Considering the very mild conditions employed, the chemoselective linkage of the electrophilic sugar with a peptide sulfhydryl group occurred in satisfactory yield, allowing the incorporation of mono and disaccharide moieties. The sugar-peptide conjugates obtained from α-d-glycosyl derivatives adopt a ß-S-configuration, indicating the high stereoselectivity of the substitution reaction.


Asunto(s)
Péptidos/química , Alquilación , Glicopéptidos/química , Glicosilación , Estructura Molecular
9.
Bioconjug Chem ; 27(8): 1921-30, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27315634

RESUMEN

Inflammation is signaled by the overexpression of epitopes on the vascular endothelium that primarily aim at recruiting immune cells into the inflamed area. The intravascular localization of these biomarkers makes them suitable targets for the MRI visualization of inflammation. Phospholipid-based nanosystems appear excellent candidates in virtue of their good biocompatibility, ability to deliver a high number of imaging units at the target site, and for the easy functionalization with targeting vectors. In this work, phospholipid-based micelles (hydrodynamic diameter of 20 nm) loaded with the amphiphilic Gd(III)-complex Gd-DOTAMA(C18)2 were vectorized with a small peptide able to specifically bind VCAM-1 receptors. The micelles displayed a high longitudinal relaxivity (36.4 s(-1)mmolGd(-1) at 25 °C and 0.7 T). A (1)H- and (17)O-water relaxometry study indicated that the paramagnetic complex embedded in the nanoparticles adopted two isomeric conformations, likely reflecting the well-known square antiprismatic (SAP) and twisted square antiprismatic (TSAP) configurations typically observed in DOTA-like lanthanide complexes. Interestingly, the TSAP structure, showing a much faster exchange rate for the water molecule coordinated to the metal ion, was the most abundant, thus explaining the high relaxivity of the micellar agent. The systemic administration of the micelles into a lipopolysaccharide-induced murine model of acute inflammation successfully demonstrated the ability of the targeting agents to detect the diseased area by T1 contrast enhanced MRI.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Imanes/química , Micelas , Fosfolípidos/química , Fosfolípidos/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Inflamación/inducido químicamente , Inflamación/diagnóstico por imagen , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones , Polietilenglicoles/química
10.
Chemistry ; 22(23): 7716-20, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27037861

RESUMEN

The redox microenvironment within a cell graft can be considered as an indicator to assess whether the graft is metabolically active or hypoxic. We present a redox-responsive MRI probe based on porous silica microparticles whose surface has been decorated with a Gd-chelate through a disulphide bridge. Such microparticles are designed to be interspersed with therapeutic cells within a biocompatible hydrogel. The onset of reducing conditions within the hydrogel is paralleled by an increased clearance of Gd, that can be detected by MRI.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética , Microesferas , Dióxido de Silicio/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Tratamiento Basado en Trasplante de Células y Tejidos , Colágeno/química , Disulfuros/química , Humanos , Ácido Hialurónico/química , Hidrogeles/química , Oxidación-Reducción , Porosidad , Propiedades de Superficie
11.
ChemMedChem ; : e202400218, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082378

RESUMEN

Photodynamic therapy (PDT) is a clinical modality based on the irradiation of different diseases, mostly tumours, with light following the selective uptake of a photosensitiser by the pathological tissue. In this study, two new silicon(IV)phtalocyanines (SiPcs) functionalized at both axial positions with a PSMA inhibitors are reported as candidate photosensitizers for PDT of prostate cancer, namely compounds SiPc-PQ(PSMAi)2 and SiPc-OSi(PSMAi)2. These compounds share the same PSMA-binding motif, but differ in the linker that connects the inhibitor moiety to the Si(IV) atom: an alkoxy (Si-O-C) bond for SiPc-PQ(PSMAi)2, and a silyloxy (Si-O-Si) bond for SiPc-OSi(PSMAi)2. Both compounds were synthesized by a facile synthetic route and fully characterized by 2D NMR, mass spectrometry and absorption/fluorescence spectrophotometry. The PDT agents showed a suitable solubility in water, where they essentially exist in monomeric form. SiPc-PQ(PSMAi)2 showed a higher singlet oxygen quantum yield ΦΔ, higher fluorescence quantum yields ФF and better photostability than SiPc-OSi(PSMAi)2. Both compounds were efficiently taken up by PSMA(+) PC3-PIP cells, but not by PSMA(-) PC3-FLU cells. However, SiPc-PQ(PSMAi)2 showed a more specific photoinduced cytotoxicity in vitro, which is likely attributable to a better stability of its water solutions.

12.
Anal Chem ; 85(12): 5627-31, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23738707

RESUMEN

Commercial Gd-containing complexes are often used as MRI reporters in cellular labeling procedures as they are internalized into endosomes by pinocytosis. A methodology has been applied to assess the relative stability of three commercial Gd contrast agents following cellular uptake in fibroblasts and macrophages. It has been found that the acyclic series of Gd MRI contrast agents are degraded much more rapidly than their macrocyclic analogues, following endosomal internalization into living cells. This helps to explain their causal role in the development of nephrogenic systemic fibrosis in renally impaired patients. The methodology has also been applied to assess the fate of Gd-DTPA-BMA-loaded liposomes upon their endosomal internalization. Resistant liposomes prevent the degradation of the complex, whereas liposomes designed to release their payload in the acidic environments show a loss of integrity of Gd-DTPA-BMA analogous to the one observed upon internalization of the free complex.


Asunto(s)
Medios de Contraste/química , Endocitosis , Endosomas/química , Gadolinio/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Endocitosis/fisiología , Endosomas/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones , Células 3T3 NIH
13.
J Vis Exp ; (193)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37036233

RESUMEN

Fibrosis occurs in various tissues as a reparative response to injury or damage. If excessive, however, fibrosis can lead to tissue scarring and organ failure, which is associated with high morbidity and mortality. Collagen is a key driver of fibrosis, with type I and type III collagen being the primary types involved in many fibrotic diseases. Unlike conventional protocols used to immobilize other proteins (e.g., elastin, albumin, fibronectin, etc.), comprehensive protocols to reproducibly immobilize different types of collagens in order to produce stable coatings are not readily available. Immobilizing collagen is surprisingly challenging because multiple experimental conditions may affect the efficiency of immobilization, including the type of collagen, the pH, the temperature, and the type of microplate used. Here, a detailed protocol to reproducibly immobilize and quantify type I and III collagens resulting in stable and reproducible gels/films is provided. Furthermore, this work demonstrates how to perform, analyze, and interpret in vitro time-resolved fluorescence binding studies to investigate the interactions between collagens and candidate collagen-binding compounds (e.g., a peptide conjugated to a metal chelate carrying, for example, europium [Eu(III)]). Such an approach can be universally applied to various biomedical applications, including the field of molecular imaging to develop targeted imaging probes, drug development, cell toxicity studies, cell proliferation studies, and immunoassays.


Asunto(s)
Colágeno , Transducción de Señal , Humanos , Colágeno/metabolismo , Fibrosis , Péptidos/metabolismo
14.
ACS Med Chem Lett ; 13(5): 807-811, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35586438

RESUMEN

A recently developed synthetic protocol allowed for the functionalization of the active peptide A9 with a fluorogenic probe, which is useful for studying biomolecular interactions. Essentially, a nucleophilic attack on a halo-substituted benzofurazan is selectively performed by a cysteine sulfhydryl group. The process is assisted by the basic catalysis of activated zeolites (4 Å molecular sieves) and promoted by microwave irradiation. Fluorescence studies revealed that a donor-acceptor pair within the peptide sequence was introduced, thus allowing a deeper investigation on the interaction process between the peptide ligand and its receptor fragment. The obtained results allowed us to come full circle for all the currently understood structural determinants that were found to be involved in the binding process.

15.
Magn Reson Med ; 65(1): 202-11, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20949634

RESUMEN

Iopamidol (Isovue®-Bracco Diagnostic Inc.) is a clinically approved X-Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH-dependent. Thus, a ratiometric method for pH assessment has been set-up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5-7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH-changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition.


Asunto(s)
Concentración de Iones de Hidrógeno , Yopamidol/química , Riñón/química , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Medios de Contraste/química , Ratones , Ratones Endogámicos BALB C
16.
Mol Pharm ; 8(5): 1750-6, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21780833

RESUMEN

Murine melanoma B16 cells display on the extracellular side of the plasma membrane a large number of reactive protein thiols (exofacial protein thiols, EPTs). These EPTs can be chemically labeled with Gd-DO3A-PDP, a Gd(III)-based MRI contrast agent bearing a 2-pyridinedithio chemical function for the recognition of EPTs. Uptake of gadolinium up to 10(9) Gd atoms per cell can be achieved. The treatment of B16 cells ex vivo with a reducing agent such as tris(2-carboxyethyl)phosphine (TCEP) results in an increase by 850% of available EPTs and an increase by 45% of Gd uptake. Blocking EPTs with N-ethylmaleimide (NEM) caused a decrease by 84% of available EPTs and a decrease by 55% of Gd uptake. The amount of Gd taken up by B16 cells is therefore dependent upon the availability of EPTs, whose actual level in turn changes according to the extracellular redox microenvironment. Then Gd-DO3A-PDP has been assessed for the labeling of tumor cells in vivo on B16.F10 melanoma tumor-bearing mice. Gd-DO3A-PDP (or Gd-DO3A as the control) has been injected directly into the tumor region at a dose level of 0.1 µmol and the signal enhancement in MR images followed over time. The washout kinetics of Gd-DO3A-PDP from tumor is very slow if compared to that of control Gd-DO3A, and 48 h post injection, the gadolinium-enhancement is still clearly visible. Therefore, B16 cells can be labeled ex vivo as well as in vivo according to a common EPTs-dependent route, provided that high levels of the thiol reactive probe can be delivered to the tumor.


Asunto(s)
Medios de Contraste , Complejos de Coordinación , Gadolinio , Melanoma Experimental/diagnóstico , Reactivos de Sulfhidrilo , Sulfuros , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Complejos de Coordinación/administración & dosificación , Complejos de Coordinación/química , Gadolinio/administración & dosificación , Gadolinio/química , Inyecciones Intralesiones , Cinética , Ligandos , Límite de Detección , Imagen por Resonancia Magnética , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Piridinas/química , Reactivos de Sulfhidrilo/administración & dosificación , Reactivos de Sulfhidrilo/química , Reactivos de Sulfhidrilo/farmacología , Sulfuros/química
17.
J Med Chem ; 64(20): 15250-15261, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34661390

RESUMEN

Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 µM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.


Asunto(s)
Aterosclerosis/metabolismo , Medios de Contraste/química , Elastina/metabolismo , Gadolinio/química , Imagen por Resonancia Magnética , Tropoelastina/análisis , Animales , Medios de Contraste/síntesis química , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Resonancia por Plasmón de Superficie
18.
J Biol Inorg Chem ; 14(2): 167-78, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18855021

RESUMEN

The metal-thiolate connectivity of recombinant Cd(7)-MT10 metallothionein from the sea mussel Mytilus galloprovincialis has been investigated for the first time by means of multinuclear, multidimensional NMR spectroscopy. The internal backbone dynamics of the protein have been assessed by the analysis of (15)N T (1) and T (2) relaxation times and steady state {(1)H}-(15)N heteronuclear NOEs. The (113)Cd NMR spectrum of mussel MT10 shows unique features, with a remarkably wide dispersion (210 ppm) of (113)Cd NMR signals. The complete assignment of cysteine Halpha and Hbeta proton resonances and the analysis of 2D (113)Cd-(113)Cd COSY and (1)H-(113)Cd HMQC type spectra allowed us to identify a four metal-thiolate cluster (alpha-domain) and a three metal-thiolate cluster (beta-domain), located at the N-terminal and the C-terminal, respectively. With respect to vertebrate MTs, the mussel MT10 displays an inversion of the alpha and beta domains inside the chain, similar to what observed in the echinoderm MT-A. Moreover, unlike the MTs characterized so far, the alpha-domain of mussel Cd(7)-MT10 is of the form M(4)S(12) instead of M(4)S(11), and has a novel topology. The beta-domain has a metal-thiolate binding pattern similar to other vertebrate MTs, but it is conformationally more rigid. This feature is quite unusual for MTs, in which the beta-domain displays a more disordered conformation than the alpha-domain. It is concluded that in mussel Cd(7)-MT10, the spacing of cysteine residues and the plasticity of the protein backbone (due to the high number of glycine residues) increase the adaptability of the protein backbone towards enfolding around the metal-thiolate clusters, resulting in minimal alterations of the ideal tetrahedral geometry around the metal centres.


Asunto(s)
Cadmio/metabolismo , Metalotioneína/química , Metalotioneína/metabolismo , Mytilus/química , Animales , Sitios de Unión , Clonación Molecular , Perfilación de la Expresión Génica , Isótopos , Espectroscopía de Resonancia Magnética , Metalotioneína/genética , Metalotioneína/aislamiento & purificación , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Estándares de Referencia
20.
J Funct Biomater ; 10(3)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269673

RESUMEN

Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200-600 µm diameter and 50-80 µm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA