Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36902400

RESUMEN

Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.


Asunto(s)
Acaricidas , Garrapatas , Vacunas , Animales , Humanos , Proteómica/métodos , Antígenos , Genómica/métodos
2.
J Biol Chem ; 297(1): 100865, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118237

RESUMEN

During feeding, a tick's mouthpart penetrates the host's skin and damages tissues and small blood vessels, triggering the extrinsic coagulation and lectin complement pathways. To elude these defense mechanisms, ticks secrete multiple anticoagulant proteins and complement system inhibitors in their saliva. Here, we characterized the inhibitory activities of the homologous tick salivary proteins tick salivary lectin pathway inhibitor, Salp14, and Salp9Pac from Ixodesscapularis in the coagulation cascade and the lectin complement pathway. All three proteins inhibited binding of mannan-binding lectin to the polysaccharide mannan, preventing the activation of the lectin complement pathway. In contrast, only Salp14 showed an appreciable effect on coagulation by prolonging the lag time of thrombin generation. We found that the anticoagulant properties of Salp14 are governed by its basic tail region, which resembles the C terminus of tissue factor pathway inhibitor alpha and blocks the assembly and/or activity of the prothrombinase complex in the same way. Moreover, the Salp14 protein tail contributes to the inhibition of the lectin complement pathway via interaction with mannan binding lectin-associated serine proteases. Furthermore, we identified BaSO4-adsorbing protein 1 isolated from the tick Ornithodoros savignyi as a distant homolog of tick salivary lectin pathway inhibitor/Salp14 proteins and showed that it inhibits the lectin complement pathway but not coagulation. The structure of BaSO4-adsorbing protein 1, solved here using NMR spectroscopy, indicated that this protein adopts a noncanonical epidermal growth factor domain-like structural fold, the first such report for tick salivary proteins. These data support a mechanism by which tick saliva proteins simultaneously inhibit both the host coagulation cascade and the lectin complement pathway.


Asunto(s)
Proteínas de Artrópodos/ultraestructura , Interacciones Huésped-Patógeno/genética , Lectinas/genética , Proteínas y Péptidos Salivales/ultraestructura , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Coagulación Sanguínea/genética , Vasos Sanguíneos/parasitología , Vasos Sanguíneos/patología , Lectina de Unión a Manosa de la Vía del Complemento/genética , Ixodes/patogenicidad , Ixodes/ultraestructura , Lectinas/ultraestructura , Espectroscopía de Resonancia Magnética , Conformación Proteica , Saliva/química , Saliva/metabolismo , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/genética , Trombina/genética , Garrapatas/genética , Garrapatas/patogenicidad
3.
EMBO Rep ; 21(4): e47852, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080959

RESUMEN

Chemokines and galectins are simultaneously upregulated and mediate leukocyte recruitment during inflammation. Until now, these effector molecules have been considered to function independently. Here, we tested the hypothesis that they form molecular hybrids. By systematically screening chemokines for their ability to bind galectin-1 and galectin-3, we identified several interacting pairs, such as CXCL12 and galectin-3. Based on NMR and MD studies of the CXCL12/galectin-3 heterodimer, we identified contact sites between CXCL12 ß-strand 1 and Gal-3 F-face residues. Mutagenesis of galectin-3 residues involved in heterodimer formation resulted in reduced binding to CXCL12, enabling testing of functional activity comparatively. Galectin-3, but not its mutants, inhibited CXCL12-induced chemotaxis of leukocytes and their recruitment into the mouse peritoneum. Moreover, galectin-3 attenuated CXCL12-stimulated signaling via its receptor CXCR4 in a ternary complex with the chemokine and receptor, consistent with our structural model. This first report of heterodimerization between chemokines and galectins reveals a new type of interaction between inflammatory mediators that can underlie a novel immunoregulatory mechanism in inflammation. Thus, further exploration of the chemokine/galectin interactome is warranted.


Asunto(s)
Galectinas , Inflamación , Animales , Quimiotaxis , Galectinas/genética , Galectinas/metabolismo , Inflamación/genética , Leucocitos/metabolismo , Ratones , Transducción de Señal
4.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955827

RESUMEN

Glycoprotein (GP)VI and integrin αIIbß3 are key signaling receptors in collagen-dependent platelet aggregation and in arterial thrombus formation under shear. The multiple downstream signaling pathways are still poorly understood. Here, we focused on disclosing the integrin-dependent roles of focal adhesion kinase (protein tyrosine kinase 2, PTK2), the shear-dependent collagen receptor GPR56 (ADGRG1 gene), and calcium and integrin-binding protein 1 (CIB1). We designed and synthetized peptides that interfered with integrin αIIb binding (pCIB and pCIBm) or mimicked the activation of GPR56 (pGRP). The results show that the combination of pGRP with PTK2 inhibition or of pGRP with pCIB > pCIBm in additive ways suppressed collagen- and GPVI-dependent platelet activation, thrombus buildup, and contraction. Microscopic thrombus formation was assessed by eight parameters (with script descriptions enclosed). The suppressive rather than activating effects of pGRP were confined to blood flow at a high shear rate. Blockage of PTK2 or interference of CIB1 no more than slightly affected thrombus formation at a low shear rate. Peptides did not influence GPVI-induced aggregation and Ca2+ signaling in the absence of shear. Together, these data reveal a shear-dependent signaling axis of PTK2, integrin αIIbß3, and CIB1 in collagen- and GPVI-dependent thrombus formation, which is modulated by GPR56 and exclusively at high shear. This work thereby supports the role of PTK2 in integrin αIIbß3 activation and signaling.


Asunto(s)
Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Trombosis , Plaquetas/metabolismo , Colágeno/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Péptidos/metabolismo , Péptidos/farmacología , Activación Plaquetaria , Adhesividad Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/metabolismo
5.
J Biol Chem ; 295(42): 14367-14378, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817341

RESUMEN

Ticks, as blood-sucking parasites, have developed a complex strategy to evade and suppress host immune responses during feeding. The crucial part of this strategy is expression of a broad family of salivary proteins, called Evasins, to neutralize chemokines responsible for cell trafficking and recruitment. However, structural information about Evasins is still scarce, and little is known about the structural determinants of their binding mechanism to chemokines. Here, we studied the structurally uncharacterized Evasin-4, which neutralizes a broad range of CC-motif chemokines, including the chemokine CC-motif ligand 5 (CCL5) involved in atherogenesis. Crystal structures of Evasin-4 and E66S CCL5, an obligatory dimeric variant of CCL5, were determined to a resolution of 1.3-1.8 Å. The Evasin-4 crystal structure revealed an L-shaped architecture formed by an N- and C-terminal subdomain consisting of eight ß-strands and an α-helix that adopts a substantially different position compared with closely related Evasin-1. Further investigation into E66S CCL5-Evasin-4 complex formation with NMR spectroscopy showed that residues of the N terminus are involved in binding to CCL5. The peptide derived from the N-terminal region of Evasin-4 possessed nanomolar affinity to CCL5 and inhibited CCL5 activity in monocyte migration assays. This suggests that Evasin-4 derivatives could be used as a starting point for the development of anti-inflammatory drugs.


Asunto(s)
Quimiocina CCL5/antagonistas & inhibidores , Proteínas y Péptidos Salivales/química , Garrapatas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Quimiocina CCL5/metabolismo , Cristalografía por Rayos X , Humanos , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo
6.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806083

RESUMEN

The integrin αIIbß3 is the most abundant integrin on platelets. Upon platelet activation, the integrin changes its conformation (inside-out signalling) and outside-in signalling takes place leading to platelet spreading, platelet aggregation and thrombus formation. Bloodsucking parasites such as mosquitoes, leeches and ticks express anticoagulant and antiplatelet proteins, which represent major sources of lead compounds for the development of useful therapeutic agents for the treatment of haemostatic disorders or cardiovascular diseases. In addition to hematophagous parasites, snakes also possess anticoagulant and antiplatelet proteins in their salivary glands. Two snake venom proteins have been developed into two antiplatelet drugs that are currently used in the clinic. The group of proteins discussed in this review are disintegrins, low molecular weight integrin-binding cysteine-rich proteins, found in snakes, ticks, leeches, worms and horseflies. Finally, we highlight various oral antagonists, which have been tested in clinical trials but were discontinued due to an increase in mortality. No new αIIbß3 inhibitors are developed since the approval of current platelet antagonists, and structure-function analysis of exogenous disintegrins could help find platelet antagonists with fewer adverse side effects.


Asunto(s)
Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/terapia , Actinas/química , Ancylostoma , Animales , Sitios de Unión , Plaquetas/metabolismo , Dípteros , Desintegrinas/química , Diseño de Fármacos , Fibrinolíticos/farmacología , Humanos , Ligandos , Pruebas de Función Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/antagonistas & inhibidores , Transducción de Señal , Venenos de Serpiente/metabolismo , Serpientes
7.
J Biol Chem ; 294(33): 12370-12379, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31235521

RESUMEN

Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8-Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17-56 and cyclic tcEv3 16-56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17-56 and tcEv3 16-56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.


Asunto(s)
Proteínas de Artrópodos , Glicosaminoglicanos , Neutrófilos/metabolismo , Receptores de Interleucina-8B , Rhipicephalus sanguineus/química , Proteínas y Péptidos Salivales , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Movimiento Celular , Perros , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Humanos , Estructura Cuaternaria de Proteína , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/metabolismo , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo
8.
Bioconjug Chem ; 31(3): 948-955, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32077689

RESUMEN

Atherosclerosis is one of the leading causes of mortality in developed and developing countries. The onset of atherosclerosis development is accompanied by overexpression of several inflammatory chemokines. Neutralization of these chemokines by chemokine-binding agents attenuates atherosclerosis progression. Here, we studied structural binding features of the tick protein Evasin-3 to chemokine (C-X-C motif) ligand 1 (CXCL1). We showed that Evasin-3-bound CXCL1 is unable to activate the CXCR2 receptor, but retains affinity to glycosaminoglycans. This observation was exploited to detect inflammation by visualizing a group of closely related CXC-type chemokines deposited on cell walls in human endothelial cells and murine carotid arteries by a fluorescent Evasin-3 conjugate. This work highlights the applicability of tick-derived chemokine-binding conjugates as a platform for the development of new agents for inflammation imaging.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Quimiocinas CXC/metabolismo , Endotelio Vascular/metabolismo , Garrapatas , Animales , Enfermedades de las Arterias Carótidas/metabolismo , Glicosaminoglicanos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/diagnóstico por imagen , Inflamación/metabolismo , Ratones
9.
Eur J Nucl Med Mol Imaging ; 46(1): 251-265, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30302506

RESUMEN

Cardiovascular disease is the major cause of morbidity and mortality in developed countries and atherosclerosis is the major cause of cardiovascular disease. Atherosclerotic lesions obstruct blood flow in the arterial vessel wall and can rupture leading to the formation of occlusive thrombi. Conventional diagnostic tools are still of limited value for identifying the vulnerable arterial plaque and for predicting its risk of rupture and of releasing thromboembolic material. Knowledge of the molecular and biological processes implicated in the process of atherosclerosis will advance the development of imaging probes to differentiate the vulnerable plaque. The development of imaging probes with high sensitivity and specificity in identifying high-risk atherosclerotic vessel wall changes and plaques is crucial for improving knowledge-based decisions and tailored individual interventions. Arterial PET imaging with 18F-FDG has shown promising results in identifying inflammatory vessel wall changes in numerous studies and clinical trials. However, due to its limited specificity in general and its intense physiological uptake in the left ventricular myocardium that impair imaging of the coronary arteries, different PET tracers for the molecular imaging of atherosclerosis have been evaluated. This review describes biological, chemical and medical expertise supporting a translational approach that will enable the development of new or the evaluation of existing PET tracers for the identification of vulnerable atherosclerotic plaques for better risk prediction and benefit to patients.


Asunto(s)
Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Fluorodesoxiglucosa F18 , Humanos , Placa Aterosclerótica/terapia , Tomografía de Emisión de Positrones/normas , Tomografía de Emisión de Positrones/tendencias
10.
Angiogenesis ; 18(2): 163-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25490937

RESUMEN

AIMS: The mechanisms of monocyte recruitment to arteriogenic collaterals are largely unknown. We investigated the role of chemokine (C-X-C-motif) ligand 1 (CXCL1) and its cognate receptor, chemokine (C-X-C-motif) receptor 2 (CXCR2) in arteriogenesis. METHODS AND RESULTS: After femoral artery ligation in Sprague-Dawley rats, either native collaterals were harvested or placebo, CXCL1 or CXCR2 blocker was administered via an osmopump. Perfusion recovery was measured with Laser Doppler, leukocyte populations were analyzed by fluorescence-activated cell sorting, and hind limb sections were stained for macrophage marker cluster of differentiation 68 (CD68). In vitro, fluorescent CXCL1 or human acute monocytic leukemia cell line (THP-1) monocytic cells were flown over shear-stressed endothelium. CXCL1 mRNA expression in collaterals was dramatically upregulated already 1 h after ligation (ratio ligated/sham 5.73). CD68 mRNA was upregulated from 12 h until 3 days after ligation (peak ratio ligated/sham 2.65). CXCL1 treatment augmented perfusion recovery at 3 and 7 days (p < 0.05) after ligation, and a significant increase in the number of peri-collateral macrophages was evident concomitantly (p < 0.05). Conversely, CXCR2 antagonist treatment caused a decrease in perfusion recovery both at 7 and 10 days postligation (p = 0.01) and also significantly reduced the number of peri-collateral macrophages (p < 0.05). In vitro, CXCL1 tethered to and was taken up by endothelial cells under shear stress conditions and enhanced THP-1 adherence compared to control (p < 0.05). In contrast, CXCR2 antagonist compromised THP-1 adherence to endothelial cells (p < 0.05). CONCLUSION: CXCL1 presented on the luminal endothelial surface leads to an increase in the number of peri-collateral macrophages, thus improving the arteriogenic response after arterial ligation.


Asunto(s)
Arterias/crecimiento & desarrollo , Quimiocina CXCL1/farmacología , Células Musculares/citología , Animales , Células Cultivadas , Quimiocina CXCL1/administración & dosificación , Quimiocina CXCL1/genética , Masculino , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Receptores de Interleucina-8B/antagonistas & inhibidores
11.
Drug Discov Today ; 29(7): 104027, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762085

RESUMEN

Various analytical technologies have been developed for the study of target-ligand interactions. The combination of these technologies gives pivotal information on the binding mechanism, kinetics, affinity, residence time, and changes in molecular structures. Mass spectrometry (MS) offers structural information, enabling the identification and quantification of target-ligand interactions. Surface plasmon resonance (SPR) provides kinetic information on target-ligand interaction in real time. The coupling of MS and SPR complements each other in the studies of target-ligand interactions. Over the last two decades, the capabilities and added values of SPR-MS have been reported. This review summarizes and highlights the benefits, applications, and potential for further research of the SPR-MS approach.


Asunto(s)
Descubrimiento de Drogas , Espectrometría de Masas , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Descubrimiento de Drogas/métodos , Espectrometría de Masas/métodos , Humanos , Ligandos , Animales
12.
Research (Wash D C) ; 7: 0381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840901

RESUMEN

Platelet activation contributes to sepsis development, leading to microthrombosis and increased inflammation, which results in disseminated intravascular coagulation and multiple organ dysfunction. Although Cathelicidin can alleviate sepsis, its role in sepsis regulation remains largely unexplored. In this study, we identified Cath-HG, a novel Cathelicidin from Hylarana guentheri skin, and analyzed its structure using nuclear magnetic resonance spectroscopy. The modulatory effect of Cath-HG on the symptoms of mice with sepsis induced by cecal ligation and puncture was evaluated in vivo, and the platelet count, degree of organ damage, and microthrombosis were measured. The antiplatelet aggregation activity of Cath-HG was studied in vitro, and its target was verified. Finally, we further investigated whether Cath-HG could regulate thrombosis in vivo in a FeCl3 injury-induced carotid artery model. The results showed that Cath-HG exhibited an α-helical structure in sodium dodecyl sulfate solution and effectively reduced organ inflammation and damage, improving survival in septic mice. It alleviated sepsis-induced thrombocytopenia and microthrombosis. In vitro, Cath-HG specifically inhibited collagen-induced platelet aggregation and modulated glycoprotein VI (GPVI) signaling pathways. Dot blotting, enzyme-linked immunosorbent assay, and pull-down experiments confirmed GPVI as the target of Cath-HG. Molecular docking and amino acid residue truncations/mutations identified crucial sites of Cath-HG. These findings suggest that GPVI represents a promising therapeutic target for sepsis, and Cath-HG may serve as a potential treatment for sepsis-related thrombocytopenia and thrombotic events. Additionally, identifying Cath-HG as a GPVI inhibitor provides insights for developing novel antithrombotic therapies targeting platelet activation mediated by GPVI.

13.
Bioorg Med Chem ; 21(12): 3555-64, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23643902

RESUMEN

Angiogenesis is a multi-step process regulated by pro- and anti-angiogenic factors. Inhibition of angiogenesis is a potential anti cancer treatment strategy that is now investigated clinically. In addition, advances in the understanding of the angiogenic process have led to the development of new angiogenesis therapies for ischemic heart disease. Currently, researchers search for objective measures that indicate pharmacological responses to pro- and anti-angiogenic drugs and therefore, there is a great interest in techniques to visualize angiogenesis noninvasively. As CD13 is selectively expressed in angiogenic blood vessels, it can serve as a target for molecular imaging tracers to noninvasively visualize angiogenic processes in animal models and patients. Here, an overview on the currently used CD13 targeted molecular imaging probes for noninvasive visualization of angiogenesis is given.


Asunto(s)
Imagen Molecular , Sondas Moleculares/farmacología , Neovascularización Patológica/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Animales , Humanos , Modelos Moleculares , Conformación Molecular , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química
14.
Chem Commun (Camb) ; 59(76): 11397-11400, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37668179

RESUMEN

The site specific attachment of the reactive TMTHSI-click handle to the N-terminus of peptides and proteins is described. The resulting molecular constructs can be used in strain-promoted azide alkyne cycloaddition (SPAAC) for reaction with azide containing proteins e.g., antibodies, peptides, nanoparticles, fluorescent dyes, chelators for radioactive isotopes and SPR-chips etc.


Asunto(s)
Azidas , Péptidos , Reacción de Cicloadición , Anticuerpos , Alquinos
15.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37631074

RESUMEN

The recently developed compound, tetramethylthiocycloheptyne sulfoximine (TMTHSI), has shown to be a promising strained alkyne for strain-promoted azide-alkyne cycloaddition (SPAAC), metal-free click chemistry. This research explores the properties of TMTHSI-based compounds via three aspects: (1) large-scale production, (2) unique stability in acidic conditions and its subsequent use in peptide synthesis, and (3) the functionalization of antibodies. Here, it is shown that (1) scale-up is achieved on a scale of up to 100 g. (2) TMTHSI is remarkably stable against TFA allowing for the site-specific functionalization of peptides on resin. Finally, (3) the functionalization of an antibody with a model payload is very efficient, with antibody conjugation demonstrating more beneficial features such as a high yield and limited hydrophobicity as compared to other alkyne reagent conjugates. These results illustrate the high potential of TMTHSI for diverse bioconjugation applications, with production already being GMP-compatible and a highly efficient conversion resulting in attractive costs of goods.

16.
J Med Chem ; 66(17): 11869-11880, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37610210

RESUMEN

Acute pancreatitis (AP) is a serious inflammatory disorder and still lacks effective therapy globally. In this study, a novel Ranacyclin peptide, Ranacin, was identified from the skin of Pelophylax nigromaculatus frog. Ranacin adopted a compact ß-hairpin conformation with a disulfide bond (Cys5-Cys15). Ranacin was also demonstrated effectively to inhibit trypsin and have anticoagulant and antioxidant activities in vitro. Furthermore, the severity of pancreatitis was significantly alleviated in l-Arg-induced AP mice after treatment with Ranacin. In addition, structure-activity studies of Ranacin analogues confirmed that the sequences outside the trypsin inhibitory loop (TIL), especially at the C-terminal side, might be closely associated with the efficacy of its trypsin inhibitory activity. In conclusion, our data suggest that Ranacin can improve pancreatic injury in mice with severe AP through its multi-activity. Therefore, Ranacin is considered a potential drug candidate in AP therapy.


Asunto(s)
Pancreatitis , Animales , Ratones , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad Aguda , Tripsina , Anfibios , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico
17.
J Am Chem Soc ; 134(25): 10321-4, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22671299

RESUMEN

The bioconjugation of organometallic complexes with peptides has proven to be a novel approach for drug discovery. We report the facile and chemoselective reaction of tyrosine-containing G-protein-coupled receptor (GPCR) peptides with [Cp*Rh(H(2)O)(3)](OTf)(2), in water, at room temperature, and at pH 5-6. We have focused on three important GPCR peptides; namely, [Tyr(1)]-leu-enkephalin, [Tyr(4)]-neurotensin(8-13), and [Tyr(3)]-octreotide, each of which has a different position for the tyrosine residue, together with competing functionalities. Importantly, all other functional groups present, i.e., amino, carboxyl, disulfide, phenyl, and indole, were not prominent sites of reactivity by the Cp*Rh tris aqua complex. Furthermore, the influence of the Cp*Rh moiety on the structure of [Tyr(3)]-octreotide was characterized by 2D NMR, resulting in the first representative structure of an organometallic-peptide complex. The biological consequences of these Cp*Rh-peptide complexes, with respect to GPCR binding and growth inhibition of MCF7 and HT29 cancer cells, will be presented for [(η(6)-Cp*Rh-Tyr(1))-leu-enkephalin](OTf)(2) and [(η(6)-Cp*Rh-Tyr(3))-octreotide](OTf)(2).


Asunto(s)
Modelos Moleculares , Compuestos Organometálicos/química , Péptidos/química , Receptores Acoplados a Proteínas G/química , Rodio/química , Tirosina/química , Unión Competitiva , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Células HT29 , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Compuestos Organometálicos/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo
19.
Biomolecules ; 12(6)2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35740954

RESUMEN

The efficacy of thrombolysis is inversely correlated with thrombus age. During early thrombogenesis, activated factor XIII (FXIIIa) cross-links α2-AP to fibrin to protect it from early lysis. This was exploited to develop an α2-AP-based imaging agent to detect early clot formation likely susceptible to thrombolysis treatment. In this study, this imaging probe was improved and validated using 111In SPECT/CT in a mouse thrombosis model. In vitro fluorescent- and 111In-labelled imaging probe-to-fibrin cross-linking assays were performed. Thrombus formation was induced in C57Bl/6 mice by endothelial damage (FeCl3) or by ligation (stenosis) of the infrarenal vena cava (IVC). Two or six hours post-surgery, mice were injected with 111In-DTPA-A16 and ExiTron Nano 12000, and binding of the imaging tracer to thrombi was assessed by SPECT/CT. Subsequently, ex vivo IVCs were subjected to autoradiography and histochemical analysis for platelets and fibrin. Efficient in vitro cross-linking of A16 imaging probe to fibrin was obtained. In vivo IVC thrombosis models yielded stable platelet-rich thrombi with FeCl3 and fibrin and red cell-rich thrombi with stenosis. In the stenosis model, clot formation in the vena cava corresponded with a SPECT hotspot using an A16 imaging probe as a molecular tracer. The fibrin-targeting A16 probe showed specific binding to mouse thrombi in in vitro assays and the in vivo DVT model. The use of specific and covalent fibrin-binding probes might enable the clinical non-invasive imaging of early and active thrombosis.


Asunto(s)
Trombosis , Trombosis de la Vena , Animales , Constricción Patológica , Modelos Animales de Enfermedad , Fibrina/química , Ratones , Ratones Endogámicos C57BL , Trombosis/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/metabolismo
20.
Chembiochem ; 12(5): 750-60, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21328514

RESUMEN

We report on the SSTR2-binding properties of a series of four dimeric [Tyr3]octreotate analogues with different spacer lengths (nine, 19, 41, and 57 atoms) between the peptides. Two analogues (9 and 57 atoms) were selected as precursors for the design, synthesis, and biological evaluation of DOTA-conjugated dimeric [Tyr3]octreotate analogues for tumor targeting. These compounds were synthesized by using a two-stage click ligation procedure: a Cu(I) -catalyzed 1,3-dipolar cycloaddition ("copper-click" reaction) and a thio acid/sulfonyl azide amidation ("sulfo-click" reaction). The IC(50) values of these DOTA-conjugated [Tyr3]octreotate analogues were comparable, and internalization studies showed that the nine-atom (111) In-DOTA-labeled [Tyr3]octreotate dimer had rapid and high receptor binding. Biodistribution studies with BALB/c nude mice bearing subcutaneous AR42J tumors showed that the (111) In-labeled [Tyr3]octreotate dimer (nine atoms) had a high tumor uptake at 1 h p.i. (38.8 ± 8.3 % ID g(-1) ), and excellent tumor retention at 4 h p.i. (40.9 ± 2.5 % ID g(-1) ). However, the introduction of the extended hydrophilic 57 atoms spacer led to rapid clearance from the circulation; this limited tumor accumulation of the radiotracer (21.4 ± 4.9 % ID g(-1) at 1 h p.i.). These findings provide important insight on dimerization and spacer effects on the in vivo properties of DOTA-conjugated [Tyr3]octreotate dimers.


Asunto(s)
Química Clic/métodos , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Receptores de Somatostatina/metabolismo , Animales , Línea Celular Tumoral , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacocinética , Unión Proteica , Cintigrafía , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA